3,514 research outputs found

    Revisiting Tropical Polynomial Division: Theory, Algorithms and Application to Neural Networks

    Full text link
    Tropical geometry has recently found several applications in the analysis of neural networks with piecewise linear activation functions. This paper presents a new look at the problem of tropical polynomial division and its application to the simplification of neural networks. We analyze tropical polynomials with real coefficients, extending earlier ideas and methods developed for polynomials with integer coefficients. We first prove the existence of a unique quotient-remainder pair and characterize the quotient in terms of the convex bi-conjugate of a related function. Interestingly, the quotient of tropical polynomials with integer coefficients does not necessarily have integer coefficients. Furthermore, we develop a relationship of tropical polynomial division with the computation of the convex hull of unions of convex polyhedra and use it to derive an exact algorithm for tropical polynomial division. An approximate algorithm is also presented, based on an alternation between data partition and linear programming. We also develop special techniques to divide composite polynomials, described as sums or maxima of simpler ones. Finally, we present some numerical results to illustrate the efficiency of the algorithms proposed, using the MNIST handwritten digit and CIFAR-10 datasets

    Alternating Minimization for Regression with Tropical Rational Functions

    Full text link
    We propose an alternating minimization heuristic for regression over the space of tropical rational functions with fixed exponents. The method alternates between fitting the numerator and denominator terms via tropical polynomial regression, which is known to admit a closed form solution. We demonstrate the behavior of the alternating minimization method experimentally. Experiments demonstrate that the heuristic provides a reasonable approximation of the input data. Our work is motivated by applications to ReLU neural networks, a popular class of network architectures in the machine learning community which are closely related to tropical rational functions

    Adapter Pruning using Tropical Characterization

    Full text link
    Adapters are widely popular parameter-efficient transfer learning approaches in natural language processing that insert trainable modules in between layers of a pre-trained language model. Apart from several heuristics, however, there has been a lack of studies analyzing the optimal number of adapter parameters needed for downstream applications. In this paper, we propose an adapter pruning approach by studying the tropical characteristics of trainable modules. We cast it as an optimization problem that aims to prune parameters from the adapter layers without changing the orientation of underlying tropical hypersurfaces. Our experiments on five NLP datasets show that tropical geometry tends to identify more relevant parameters to prune when compared with the magnitude-based baseline, while a combined approach works best across the tasks.Comment: Accepted at EMNLP 2023, Finding
    • …
    corecore