304 research outputs found

    Circuit Techniques for Low-Power and Secure Internet-of-Things Systems

    Full text link
    The coming of Internet of Things (IoT) is expected to connect the physical world to the cyber world through ubiquitous sensors, actuators and computers. The nature of these applications demand long battery life and strong data security. To connect billions of things in the world, the hardware platform for IoT systems must be optimized towards low power consumption, high energy efficiency and low cost. With these constraints, the security of IoT systems become a even more difficult problem compared to that of computer systems. A new holistic system design considering both hardware and software implementations is demanded to face these new challenges. In this work, highly robust and low-cost true random number generators (TRNGs) and physically unclonable functions (PUFs) are designed and implemented as security primitives for secret key management in IoT systems. They provide three critical functions for crypto systems including runtime secret key generation, secure key storage and lightweight device authentication. To achieve robustness and simplicity, the concept of frequency collapse in multi-mode oscillator is proposed, which can effectively amplify the desired random variable in CMOS devices (i.e. process variation or noise) and provide a runtime monitor of the output quality. A TRNG with self-tuning loop to achieve robust operation across -40 to 120 degree Celsius and 0.6 to 1V variations, a TRNG that can be fully synthesized with only standard cells and commercial placement and routing tools, and a PUF with runtime filtering to achieve robust authentication, are designed based upon this concept and verified in several CMOS technology nodes. In addition, a 2-transistor sub-threshold amplifier based "weak" PUF is also presented for chip identification and key storage. This PUF achieves state-of-the-art 1.65% native unstable bit, 1.5fJ per bit energy efficiency, and 3.16% flipping bits across -40 to 120 degree Celsius range at the same time, while occupying only 553 feature size square area in 180nm CMOS. Secondly, the potential security threats of hardware Trojan is investigated and a new Trojan attack using analog behavior of digital processors is proposed as the first stealthy and controllable fabrication-time hardware attack. Hardware Trojan is an emerging concern about globalization of semiconductor supply chain, which can result in catastrophic attacks that are extremely difficult to find and protect against. Hardware Trojans proposed in previous works are based on either design-time code injection to hardware description language or fabrication-time modification of processing steps. There have been defenses developed for both types of attacks. A third type of attack that combines the benefits of logical stealthy and controllability in design-time attacks and physical "invisibility" is proposed in this work that crosses the analog and digital domains. The attack eludes activation by a diverse set of benchmarks and evades known defenses. Lastly, in addition to security-related circuits, physical sensors are also studied as fundamental building blocks of IoT systems in this work. Temperature sensing is one of the most desired functions for a wide range of IoT applications. A sub-threshold oscillator based digital temperature sensor utilizing the exponential temperature dependence of sub-threshold current is proposed and implemented. In 180nm CMOS, it achieves 0.22/0.19K inaccuracy and 73mK noise-limited resolution with only 8865 square micrometer additional area and 75nW extra power consumption to an existing IoT system.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/138779/1/kaiyuan_1.pd

    Design, Fabrication, and Run-time Strategies for Hardware-Assisted Security

    Get PDF
    Today, electronic computing devices are critically involved in our daily lives, basic infrastructure, and national defense systems. With the growing number of threats against them, hardware-based security features offer the best chance for building secure and trustworthy cyber systems. In this dissertation, we investigate ways of making hardware-based security into a reality with primary focus on two areas: Hardware Trojan Detection and Physically Unclonable Functions (PUFs). Hardware Trojans are malicious modifications made to original IC designs or layouts that can jeopardize the integrity of hardware and software platforms. Since most modern systems critically depend on ICs, detection of hardware Trojans has garnered significant interest in academia, industry, as well as governmental agencies. The majority of existing detection schemes focus on test-time because of the limited hardware resources available at run-time. In this dissertation, we explore innovative run-time solutions that utilize on-chip thermal sensor measurements and fundamental estimation/detection theory to expose changes in IC power/thermal profile caused by Trojan activation. The proposed solutions are low overhead and also generalizable to many other sensing modalities and problem instances. Simulation results using state-of-the-art tools on publicly available Trojan benchmarks verify that our approaches can detect Trojans quickly and with few false positives. Physically Unclonable Functions (PUFs) are circuits that rely on IC fabrication variations to generate unique signatures for various security applications such as IC authentication, anti-counterfeiting, cryptographic key generation, and tamper resistance. While the existence of variations has been well exploited in PUF design, knowledge of exactly how variations come into existence has largely been ignored. Yet, for several decades the Design-for-Manufacturability (DFM) community has actually investigated the fundamental sources of these variations. Furthermore, since manufacturing variations are often harmful to IC yield, the existing DFM tools have been geared towards suppressing them (counter-intuitive for PUFs). In this dissertation, we make several improvements over current state-of-the-art work in PUFs. First, our approaches exploit existing DFM models to improve PUFs at physical layout and mask generation levels. Second, our proposed algorithms reverse the role of standard DFM tools and extend them towards improving PUF quality without harming non-PUF portions of the IC. Finally, since our approaches occur after design and before fabrication, they are applicable to all types of PUFs and have little overhead in terms of area, power, etc. The innovative and unconventional techniques presented in this dissertation should act as important building blocks for future work in cyber security

    Secure Physical Design

    Get PDF
    An integrated circuit is subject to a number of attacks including information leakage, side-channel attacks, fault-injection, malicious change, reverse engineering, and piracy. Majority of these attacks take advantage of physical placement and routing of cells and interconnects. Several measures have already been proposed to deal with security issues of the high level functional design and logic synthesis. However, to ensure end-to-end trustworthy IC design flow, it is necessary to have security sign-off during physical design flow. This paper presents a secure physical design roadmap to enable end-to-end trustworthy IC design flow. The paper also discusses utilization of AI/ML to establish security at the layout level. Major research challenges in obtaining a secure physical design are also discussed

    Developing Trustworthy Hardware with Security-Driven Design and Verification

    Full text link
    Over the past several decades, computing hardware has evolved to become smaller, yet more performant and energy-efficient. Unfortunately these advancements have come at a cost of increased complexity, both physically and functionally. Physically, the nanometer-scale transistors used to construct Integrated Circuits (ICs), have become astronomically expensive to fabricate. Functionally, ICs have become increasingly dense and feature rich to optimize application-specific tasks. To cope with these trends, IC designers outsource both fabrication and portions of Register-Transfer Level (RTL) design. Outsourcing, combined with the increased complexity of modern ICs, presents a security risk: we must trust our ICs have been designed and fabricated to specification, i.e., they do not contain any hardware Trojans. Working in a bottom-up fashion, I initially study the threat of outsourcing fabrication. While prior work demonstrates fabrication-time attacks (modifications) on IC layouts, it is unclear what makes a layout vulnerable to attack. To answer this, in my IC Attack Surface (ICAS) work, I develop a framework that quantifies the security of IC layouts. Using ICAS, I show that modern ICs leave a plethora of both placement and routing resources available for attackers to exploit. Next, to plug these gaps, I construct the first routing-centric defense (T-TER) against fabrication-time Trojans. T-TER wraps security-critical interconnects in IC layouts with tamper-evident guard wires to prevent foundry-side attackers from modifying a design. After hardening layouts against fabrication-time attacks, outsourced designs become the most critical threat. To address this, I develop a dynamic verification technique (Bomberman) to vet untrusted third-party RTL hardware for Ticking Timebomb Trojans (TTTs). By targeting a specific type of Trojan behavior, Bomberman does not suffer from false negatives (missed TTTs), and therefore systematically reduces the overall design-time attack surface. Lastly, to generalize the Bomberman approach to automatically discover other behaviorally-defined classes of malicious logic, I adapt coverage-guided software fuzzers to the RTL verification domain. Leveraging software fuzzers for RTL verification enables IC design engineers to optimize test coverage of third-party designs without intimate implementation knowledge. Overall, this dissertation aims to make security a first-class design objective, alongside power, performance, and area, throughout the hardware development process.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/169761/1/trippel_1.pd

    On Borrowed Time -- Preventing Static Power Side-Channel Analysis

    Full text link
    In recent years, static power side-channel analysis attacks have emerged as a serious threat to cryptographic implementations, overcoming state-of-the-art countermeasures against side-channel attacks. The continued down-scaling of semiconductor process technology, which results in an increase of the relative weight of static power in the total power budget of circuits, will only improve the viability of static power side-channel analysis attacks. Yet, despite the threat posed, limited work has been invested into mitigating this class of attack. In this work we address this gap. We observe that static power side-channel analysis relies on stopping the target circuit's clock over a prolonged period, during which the circuit holds secret information in its registers. We propose Borrowed Time, a countermeasure that hinders an attacker's ability to leverage such clock control. Borrowed Time detects a stopped clock and triggers a reset that wipes any registers containing sensitive intermediates, whose leakages would otherwise be exploitable. We demonstrate the effectiveness of our countermeasure by performing practical Correlation Power Analysis attacks under optimal conditions against an AES implementation on an FPGA target with and without our countermeasure in place. In the unprotected case, we can recover the entire secret key using traces from 1,500 encryptions. Under the same conditions, the protected implementation successfully prevents key recovery even with traces from 1,000,000 encryptions

    Toward Reliable, Secure, and Energy-Efficient Multi-Core System Design

    Get PDF
    Computer hardware researchers have perennially focussed on improving the performance of computers while stipulating the energy consumption under a strict budget. While several innovations over the years have led to high performance and energy efficient computers, more challenges have also emerged as a fallout. For example, smaller transistor devices in modern multi-core systems are afflicted with several reliability and security concerns, which were inconceivable even a decade ago. Tackling these bottlenecks happens to negatively impact the power and performance of the computers. This dissertation explores novel techniques to gracefully solve some of the pressing challenges of the modern computer design. Specifically, the proposed techniques improve the reliability of on-chip communication fabric under a high power supply noise, increase the energy-efficiency of low-power graphics processing units, and demonstrate an unprecedented security loophole of the low-power computing paradigm through rigorous hardware-based experiments
    • …
    corecore