83 research outputs found

    Bridge trisections in rational surfaces

    Full text link
    We study smooth isotopy classes of complex curves in complex surfaces from the perspective of the theory of bridge trisections, with a special focus on curves in CP2\mathbb{CP}^2 and CP1×CP1\mathbb{CP}^1\times\mathbb{CP}^1. We are especially interested in bridge trisections and trisections that are as simple as possible, which we call "efficient". We show that any curve in CP2\mathbb{CP}^2 or CP1×CP1\mathbb{CP}^1\times\mathbb{CP}^1 admits an efficient bridge trisection. Because bridge trisections and trisections are nicely related via branched covering operations, we are able to give many examples of complex surfaces that admit efficient trisections. Among these are hypersurfaces in CP3\mathbb{CP}^3, the elliptic surfaces E(n)E(n), the Horikawa surfaces H(n)H(n), and complete intersections of hypersurfaces in CPN\mathbb{CP}^N. As a corollary, we observe that, in many cases, manifolds that are homeomorphic but not diffeomorphic have the same trisection genus, which is consistent with the conjecture that trisection genus is additive under connected sum. We give many trisection diagrams to illustrate our examples.Comment: 46 pages, 28 color figure

    The Dihedral Genus of a Knot

    Full text link
    Let KS3K\subset S^3 be a Fox pp-colored knot and assume KK bounds a locally flat surface SB4S\subset B^4 over which the given pp-coloring extends. This coloring of SS induces a dihedral branched cover XS4X\to S^4. Its branching set is a closed surface embedded in S4S^4 locally flatly away from one singularity whose link is KK. When SS is homotopy ribbon and XX a definite four-manifold, a condition relating the signature of XX and the Murasugi signature of KK guarantees that SS in fact realizes the four-genus of KK. We exhibit an infinite family of knots KmK_m with this property, each with a {Fox 3-}colored surface of minimal genus mm. As a consequence, we classify the signatures of manifolds XX which arise as dihedral covers of S4S^4 in the above sense.Comment: 19 pages, 10 figures, 3 footnotes. Final versio

    Trisections of 4-manifolds via Lefschetz fibrations

    Full text link
    We develop a technique for gluing relative trisection diagrams of 44-manifolds with nonempty connected boundary to obtain trisection diagrams for closed 44-manifolds. As an application, we describe a trisection of any closed 44-manifold which admits a Lefschetz fibration over S2S^2 equipped with a section of square 1-1, by an explicit diagram determined by the vanishing cycles of the Lefschetz fibration. In particular, we obtain a trisection diagram for some simply connected minimal complex surface of general type. As a consequence, we obtain explicit trisection diagrams for a pair of closed 44-manifolds which are homeomorphic but not diffeomorphic. Moreover, we describe a trisection for any oriented S2S^2-bundle over any closed surface and in particular we draw the corresponding diagrams for T2×S2T^2 \times S^2 and T2×~S2T^2 \tilde{\times} S^2 using our gluing technique. Furthermore, we provide an alternate proof of a recent result of Gay and Kirby which says that every closed 44-manifold admits a trisection. The key feature of our proof is that Cerf theory takes a back seat to contact geometry.Comment: 34 pages, 21 figure

    Bridge trisections of knotted surfaces in 4--manifolds

    Full text link
    We prove that every smoothly embedded surface in a 4--manifold can be isotoped to be in bridge position with respect to a given trisection of the ambient 4--manifold; that is, after isotopy, the surface meets components of the trisection in trivial disks or arcs. Such a decomposition, which we call a \emph{generalized bridge trisection}, extends the authors' definition of bridge trisections for surfaces in S4S^4. Using this new construction, we give diagrammatic representations called \emph{shadow diagrams} for knotted surfaces in 4--manifolds. We also provide a low-complexity classification for these structures and describe several examples, including the important case of complex curves inside CP2\mathbb{CP}^2. Using these examples, we prove that there exist exotic 4--manifolds with (g,0)(g,0)--trisections for certain values of gg. We conclude by sketching a conjectural uniqueness result that would provide a complete diagrammatic calculus for studying knotted surfaces through their shadow diagrams.Comment: 17 pages, 5 figures. Comments welcom

    Trisections and spun 4-manifolds

    Full text link
    We study trisections of 4-manifolds obtained by spinning and twist-spinning 3-manifolds, and we show that, given a (suitable) Heegaard diagram for the 3-manifold, one can perform simple local modifications to obtain a trisection diagram for the 4-manifold. We also show that this local modification can be used to convert a (suitable) doubly-pointed Heegaard diagram for a 3-manifold/knot pair into a doubly-pointed trisection diagram for the 4-manifold/2-knot pair resulting from the twist-spinning operation. This technique offers a rich list of new manifolds that admit trisection diagrams that are amenable to study. We formulate a conjecture about 4-manifolds with trisection genus three and provide some supporting evidence.Comment: 16 pages, 12 figures. Comments welcome

    Algorithms for l-sections on genus two curves over finite fields and applications

    Get PDF
    We study \ell-section algorithms for Jacobian of genus two over finite fields. We provide trisection (division by \ell=3) algorithms for Jacobians of genus 2 curves over finite fields \F_q of odd and even characteristic. In odd characteristic we obtain a symbolic trisection polynomial whose roots correspond (bijectively) to the set of trisections of the given divisor. We also construct a polynomial whose roots allow us to calculate the 3-torsion divisors. We show the relation between the rank of the 3-torsion subgroup and the factorization of this 3-torsion polynomial, and describe the factorization of the trisection polynomials in terms of the galois structure of the 3- torsion subgroup. We generalize these ideas and we determine the field of definition of an \ell-section with \ell \in {3, 5, 7}. In characteristic two for non-supersingular hyperelliptic curves we characterize the 3-torsion divisors and provide a polynomial whose roots correspond to the set of trisections of the given divisor. We also present a generalization of the known algorithms for the computation of the 2-Sylow subgroup to the case of the \ell-Sylow subgroup in general and we present explicit algorithms for the computation of the 3-Sylow subgroup. Finally we show some examples where we can obtain the central coefficients of the characteristic polynomial of the Frobenius endomorphism reduced modulo 3 using the generators obtained with the 3-Sylow algorithm.En esta tesis se estudian algoritmos de \ell-división para Jacobianas de curvas de género 2. Se presentan algoritmos de trisección (división por \ell=3) para Jacobianas de curvas de género 2 definidas sobre cuerpos finitos \F_q de característica par o impar indistintamente. En característica impar se obtiene explícitamente un polinomio de trisección, cuyas raíces se corresponden biyectivamente con el conjunto de trisecciones de un divisor cualquiera de la Jacobiana. Asimismo se proporciona otro polinomio a partir de cuyas raíces se calcula el conjunto de los divisores de orden 3. Se muestra la relación entre el rango del subgrupo de 3-torsión y la factorización del polinomio de la 3- torsión, y se describe la factorización del polinomio de trisección en términos de las órbitas galoisianas de la 3- torsión. Se generalizan estas ideas para otros valores de \ell y se determina el cuerpo de definición de una \ell-sección para \ell=3,5,7. Para curvas no-supersingulares en característica par también se da una caracterización de la 3-torsión y se proporciona un polinomio de trisección para un divisor cualquiera. Se da una generalización, para \ell arbitraria, de los algoritmos conocidos para el cómputo explícito del subgrupo de 2-Sylow, y se detalla explícitamente el algoritmo para el cómputo del subgrupo de 3-Sylow. Finalmente, se dan ejemplos de cómo obtener los valores de la reducción módulo 3 de los coeficientes centrales del polinomio característico del endomorfismo de Frobenius mediante los generadores proporcionados por el algoritmo de cálculo del 3-Sylow.En aquesta tesi s'estudien algoritmes de \ell-divisió per a grups de punts de Jacobianes de corbes de gènere 2. Es presenten algoritmes de trisecció (divisió per \ell=3) per a Jacobianes de corbes de gènere 2 definides sobre cossos finits \F_q de característica parell o senar indistintament. En característica parell s'obté explícitament un polinomi de trisecció, les arrels del qual estan en bijecció amb el conjunt de triseccions d'un divisor de la Jacobiana qualsevol. De manera semblant, es proporciona un altre polinomi amb les arrels del qual es calcula el conjunt dels divisors d'ordre 3. Es mostra la relació entre el rang del subgrup de 3-torsió i la factorització del polinomi de la 3-torsió, i es descriu la factorització del polinomi de trisecció en termes de les òrbites galoisianes de la 3-torsió. Es generalitzen aquestes idees a altres valors de \ell i es determina el cos de definició d'una \ell-secció per a \ell=3,5,7. Per a corbes nosupersingulars en característica 2 també es proporciona una caracterització de la 3-torsió i un polinomi de trisecció per a un divisor qualsevol. Es dóna una generalització, per a \ell arbitrària, dels algoritmes coneguts per al càlcul explícit del subgrup de 2-Sylow, i es detalla explícitament en el cas del 3-Sylow. Finalment es mostren exemples de com obtenir els valors de la reducció mòdul 3 dels coeficients centrals del polinomi característic de l'endomorfisme de Frobenius fent servir els generadors proporcionats per l'algoritme de càlcul del 3-Sylow

    Compact hyperbolic manifolds without spin structures

    Full text link
    We exhibit the first examples of compact orientable hyperbolic manifolds that do not have any spin structure. We show that such manifolds exist in all dimensions n4n \geq 4. The core of the argument is the construction of a compact orientable hyperbolic 44-manifold MM that contains a surface SS of genus 33 with self intersection 11. The 44-manifold MM has an odd intersection form and is hence not spin. It is built by carefully assembling some right angled 120120-cells along a pattern inspired by the minimum trisection of CP2\mathbb{C}\mathbb{P}^2. The manifold MM is also the first example of a compact orientable hyperbolic 44-manifold satisfying any of these conditions: 1) H2(M,Z)H_2(M,\mathbb{Z}) is not generated by geodesically immersed surfaces. 2) There is a covering M~\tilde{M} that is a non-trivial bundle over a compact surface.Comment: 23 pages, 16 figure
    corecore