215 research outputs found

    Medicinal Plant Extracts and Natural Compounds for the Treatment of Cutaneous Lupus Erythematosus: A Systematic Review

    Get PDF
    Cutaneous lupus erythematosus (CLE) is a group of autoimmune connective tissue disorders that significantly impact quality of life. Current treatment approaches typically use antimalarial medications, though patients may become recalcitrant. Other treatment options include general immunosuppressants, highlighting the need for more and more targeted treatment options. The purpose of this systematic review was to identify potential compounds that could be repurposed for CLE from natural products since many rheumatologic drugs are derived from natural products, including antimalarials. This study was registered with PROSPERO, the international prospective register of systematic reviews (registration number CRD42021251048). We comprehensively searched Ovid Medline, Cochrane Library, and Scopus databases from inception to April 27th, 2021. These terms included cutaneous lupus erythematosus; general plant, fungus, bacteria terminology; selected plants and plant-derived products; selected antimalarials; and JAK inhibitors. Our search yielded 13,970 studies, of which 1,362 were duplicates. We screened 12,608 abstracts, found 12,043 to be irrelevant, and assessed 565 full-text studies for eligibility. Of these, 506 were excluded, and 59 studies were included in the data extraction. The ROBINS-I risk of bias assessment tool was used to assess studies that met our inclusion criteria. According to our findings, several natural compounds do reduce inflammation in lupus and other autoimmune skin diseases in studies using in vitro methods, mouse models, and clinical observational studies, along with a few randomized clinical trials. Our study has cataloged evidence in support of potential natural compounds and plant extracts that could serve as novel sources of active ingredients for the treatment of CLE. It is imperative that further studies in mice and humans are conducted to validate these findings

    A comprehensive review of Tripterygium wilfordii hook. f. in the treatment of rheumatic and autoimmune diseases: Bioactive compounds, mechanisms of action, and future directions

    Get PDF
    Rheumatic and autoimmune diseases are a group of immune system-related disorders wherein the immune system mistakenly attacks and damages the body’s tissues and organs. This excessive immune response leads to inflammation, tissue damage, and functional impairment. Therapeutic approaches typically involve medications that regulate immune responses, reduce inflammation, alleviate symptoms, and target specific damaged organs. Tripterygium wilfordii Hook. f., a traditional Chinese medicinal plant, has been widely studied in recent years for its application in the treatment of autoimmune diseases, including rheumatoid arthritis, systemic lupus erythematosus, and multiple sclerosis. Numerous studies have shown that preparations of Tripterygium wilfordii have anti-inflammatory, immunomodulatory, and immunosuppressive effects, which effectively improve the symptoms and quality of life of patients with autoimmune diseases, whereas the active metabolites of T. wilfordii have been demonstrated to inhibit immune cell activation, regulate the production of inflammatory factors, and modulate the immune system. However, although these effects contribute to reductions in inflammatory responses and the suppression of autoimmune reactions, as well as minimize tissue and organ damage, the underlying mechanisms of action require further investigation. Moreover, despite the efficacy of T. wilfordii in the treatment of autoimmune diseases, its toxicity and side effects, including its potential hepatotoxicity and nephrotoxicity, warrant a thorough assessment. Furthermore, to maximize the therapeutic benefits of this plant in the treatment of autoimmune diseases and enable more patients to utilize these benefits, efforts should be made to strengthen the regulation and standardized use of T. wilfordii

    IL-15 and its role in rheumatoid arthritis

    Get PDF
    Background: IL-15 is involved in all phases of rheumatoid arthritis. Recently we have shown that rheumatoid arthritis synovial fibroblasts (RASF) express both IL-15 and functional IL-15 receptor [1]. Objective: The aim of present study was to identify pathways that are regulated by autocrine IL-15 (IL-15R) in RASF. Methods: RASF were transfected with plasmid encoding IL-15R antagonist (CRB-15, Cardion AG) or control constructs. RNA from transient transfectants were used for Microarray analysis. The differential expression of genes obtained by microarray analysis was verified by SYBR Green real-time PCR. The expression of IL-15Rα, cell proliferation and the expression of p16 and p21 were evaluated in stably transfected cells. Results: The IL-15R antagonist produced by transfected RASF blocked the endogenous IL-15/IL-15Rα interaction, which resulted in an inhibition of cell proliferation (45 ± 10%) via an increase of the expression of p16. In addition, we found that inhibition of IL-15Rα induced the expression of mRNA for FGFR-3. Since two isoforms of FGFR-3 have been identified (FGFR-3b and FGFR-3c) [2], we tested the effect of IL-15Rα inhibition on their expression. In contrast to FGFR-3b, the level of mRNA for FGFR-3c was strongly increased in cells transfected with the IL-15R antagonist (4.71 ± 2.5 in transient transfectants and 6.1 ± 1 fold in stable transfectants). FGFR-3c isoform binds specifically FGF-9, but also FGF-2 [2]. Besides FGFR-3, FGF-2 that is abundant in RA joints binds to FGFR-1. In vitro studies revealed that FGFR-1 transmits a potent mitogenic signal, whereas FGFR-3 usually has no stimulatory effect or inhibits cell proliferation. In contrast to FGFR-3c, blocking of IL-15Rα did not change the mRNA expression for FGFR-1 in RASF. Moreover, we checked whether FGF-2 affects the expression of IL-15Rα. Indeed, FGF-2 strongly decreased the spontaneous and tumor necrosis factor alpha-triggered expression of IL-15Rα at the mRNA and protein levels. Conclusion: Our findings raise the possibility of a negative loop between FGF-2/FGFR-3c and IL-15/IL-15R signaling in RASF. Moreover, the activation of RASF by FGFs could depend on the ratio of FGFR-1/FGFR-3 expression, which is controlled by the endogenous IL-15/IL-15R system

    Antigen-specific suppression of inflammatory arthritis by dendritic cells

    Get PDF
    Purpose Antigen-specific suppression of a previously primed immune response is a major challenge for immunotherapy of autoimmune disease. We have shown that NF-κB inactivation in dendritic cells (modified DC) converts them into cells that tolerize rather than immunize to specific antigen [1]. Antigen-exposed modified DC prevent priming of immunity, and they suppress previously primed immune responses. Regulatory CD4+ T cells, which can transfer antigen-specific tolerance in an IL-10-dependent fashion, mediate the tolerance. We hypothesized that modified DC exposed to arthritogenic antigen would suppress clinical arthritis after disease onset. Methods Antigen-induced arthritis was induced in C57/Bl6 mice by priming to methylated bovine serum albumin (mBSA) antigen followed by challenge injection of mBSA to one knee. Knee swelling was apparent within 2 days, with peak clinical signs apparent at 5 days. Mice were treated with antigen-exposed modified DC between 2 and 6 days after mBSA challenge to the knee joint. Results Clinical arthritis was suppressed in each group receiving mBSA-exposed modified DC within 4 days compared with mice that received either no DC or keyhole limpet hemocyanin-exposed modified DC. Clinical improvement was associated with mBSA-specific tolerance in mice receiving mBSA-exposed modified DC. Tolerance induction was not impaired by concomitant administration of anti-tumor necrosis factor alpha monoclonal antibody. Subsequent rechallenge with intra-articular IL-1 induced flare of arthritis in all groups, which could be effectively suppressed by a second administration of mBSA-exposed modified DC. Conclusions The data indicate that modified DC induce antigen-specific immune suppression in this model of inflammatory arthritis, even after full clinical expression of the disease. These observations have important implications for antigen-specific therapy of autoimmunity
    corecore