1,799 research outputs found

    Triplet Distillation for Deep Face Recognition

    Full text link
    Convolutional neural networks (CNNs) have achieved a great success in face recognition, which unfortunately comes at the cost of massive computation and storage consumption. Many compact face recognition networks are thus proposed to resolve this problem. Triplet loss is effective to further improve the performance of those compact models. However, it normally employs a fixed margin to all the samples, which neglects the informative similarity structures between different identities. In this paper, we propose an enhanced version of triplet loss, named triplet distillation, which exploits the capability of a teacher model to transfer the similarity information to a small model by adaptively varying the margin between positive and negative pairs. Experiments on LFW, AgeDB, and CPLFW datasets show the merits of our method compared to the original triplet loss.Comment: 5 pages, 2 tables, accpeted by ICML 2019 ODML-CDNNR Worksho

    Learning Metrics from Teachers: Compact Networks for Image Embedding

    Full text link
    Metric learning networks are used to compute image embeddings, which are widely used in many applications such as image retrieval and face recognition. In this paper, we propose to use network distillation to efficiently compute image embeddings with small networks. Network distillation has been successfully applied to improve image classification, but has hardly been explored for metric learning. To do so, we propose two new loss functions that model the communication of a deep teacher network to a small student network. We evaluate our system in several datasets, including CUB-200-2011, Cars-196, Stanford Online Products and show that embeddings computed using small student networks perform significantly better than those computed using standard networks of similar size. Results on a very compact network (MobileNet-0.25), which can be used on mobile devices, show that the proposed method can greatly improve Recall@1 results from 27.5\% to 44.6\%. Furthermore, we investigate various aspects of distillation for embeddings, including hint and attention layers, semi-supervised learning and cross quality distillation. (Code is available at https://github.com/yulu0724/EmbeddingDistillation.)Comment: To appear at CVPR 201

    Model Distillation with Knowledge Transfer from Face Classification to Alignment and Verification

    Full text link
    Knowledge distillation is a potential solution for model compression. The idea is to make a small student network imitate the target of a large teacher network, then the student network can be competitive to the teacher one. Most previous studies focus on model distillation in the classification task, where they propose different architects and initializations for the student network. However, only the classification task is not enough, and other related tasks such as regression and retrieval are barely considered. To solve the problem, in this paper, we take face recognition as a breaking point and propose model distillation with knowledge transfer from face classification to alignment and verification. By selecting appropriate initializations and targets in the knowledge transfer, the distillation can be easier in non-classification tasks. Experiments on the CelebA and CASIA-WebFace datasets demonstrate that the student network can be competitive to the teacher one in alignment and verification, and even surpasses the teacher network under specific compression rates. In addition, to achieve stronger knowledge transfer, we also use a common initialization trick to improve the distillation performance of classification. Evaluations on the CASIA-Webface and large-scale MS-Celeb-1M datasets show the effectiveness of this simple trick.Comment: 10 pages, 1 figure

    Factorized Distillation: Training Holistic Person Re-identification Model by Distilling an Ensemble of Partial ReID Models

    Full text link
    Person re-identification (ReID) is aimed at identifying the same person across videos captured from different cameras. In the view that networks extracting global features using ordinary network architectures are difficult to extract local features due to their weak attention mechanisms, researchers have proposed a lot of elaborately designed ReID networks, while greatly improving the accuracy, the model size and the feature extraction latency are also soaring. We argue that a relatively compact ordinary network extracting globally pooled features has the capability to extract discriminative local features and can achieve state-of-the-art precision if only the model's parameters are properly learnt. In order to reduce the difficulty in learning hard identity labels, we propose a novel knowledge distillation method: Factorized Distillation, which factorizes both feature maps and retrieval features of holistic ReID network to mimic representations of multiple partial ReID models, thus transferring the knowledge from partial ReID models to the holistic network. Experiments show that the performance of model trained with the proposed method can outperform state-of-the-art with relatively few network parameters.Comment: 10 pages, 5 figure

    Towards Learning a Universal Non-Semantic Representation of Speech

    Full text link
    The ultimate goal of transfer learning is to reduce labeled data requirements by exploiting a pre-existing embedding model trained for different datasets or tasks. The visual and language communities have established benchmarks to compare embeddings, but the speech community has yet to do so. This paper proposes a benchmark for comparing speech representations on non-semantic tasks, and proposes a representation based on an unsupervised triplet-loss objective. The proposed representation outperforms other representations on the benchmark, and even exceeds state-of-the-art performance on a number of transfer learning tasks. The embedding is trained on a publicly available dataset, and it is tested on a variety of low-resource downstream tasks, including personalization tasks and medical domain. The benchmark, models, and evaluation code are publicly released

    Learning Unified Embedding for Apparel Recognition

    Full text link
    In apparel recognition, specialized models (e.g. models trained for a particular vertical like dresses) can significantly outperform general models (i.e. models that cover a wide range of verticals). Therefore, deep neural network models are often trained separately for different verticals. However, using specialized models for different verticals is not scalable and expensive to deploy. This paper addresses the problem of learning one unified embedding model for multiple object verticals (e.g. all apparel classes) without sacrificing accuracy. The problem is tackled from two aspects: training data and training difficulty. On the training data aspect, we figure out that for a single model trained with triplet loss, there is an accuracy sweet spot in terms of how many verticals are trained together. To ease the training difficulty, a novel learning scheme is proposed by using the output from specialized models as learning targets so that L2 loss can be used instead of triplet loss. This new loss makes the training easier and make it possible for more efficient use of the feature space. The end result is a unified model which can achieve the same retrieval accuracy as a number of separate specialized models, while having the model complexity as one. The effectiveness of our approach is shown in experiments.Comment: 8 page

    MarginDistillation: distillation for margin-based softmax

    Full text link
    The usage of convolutional neural networks (CNNs) in conjunction with a margin-based softmax approach demonstrates a state-of-the-art performance for the face recognition problem. Recently, lightweight neural network models trained with the margin-based softmax have been introduced for the face identification task for edge devices. In this paper, we propose a novel distillation method for lightweight neural network architectures that outperforms other known methods for the face recognition task on LFW, AgeDB-30 and Megaface datasets. The idea of the proposed method is to use class centers from the teacher network for the student network. Then the student network is trained to get the same angles between the class centers and the face embeddings, predicted by the teacher network

    Zoom-Net: Mining Deep Feature Interactions for Visual Relationship Recognition

    Full text link
    Recognizing visual relationships among any pair of localized objects is pivotal for image understanding. Previous studies have shown remarkable progress in exploiting linguistic priors or external textual information to improve the performance. In this work, we investigate an orthogonal perspective based on feature interactions. We show that by encouraging deep message propagation and interactions between local object features and global predicate features, one can achieve compelling performance in recognizing complex relationships without using any linguistic priors. To this end, we present two new pooling cells to encourage feature interactions: (i) Contrastive ROI Pooling Cell, which has a unique deROI pooling that inversely pools local object features to the corresponding area of global predicate features. (ii) Pyramid ROI Pooling Cell, which broadcasts global predicate features to reinforce local object features.The two cells constitute a Spatiality-Context-Appearance Module (SCA-M), which can be further stacked consecutively to form our final Zoom-Net.We further shed light on how one could resolve ambiguous and noisy object and predicate annotations by Intra-Hierarchical trees (IH-tree). Extensive experiments conducted on Visual Genome dataset demonstrate the effectiveness of our feature-oriented approach compared to state-of-the-art methods (Acc@1 11.42% from 8.16%) that depend on explicit modeling of linguistic interactions. We further show that SCA-M can be incorporated seamlessly into existing approaches to improve the performance by a large margin. The source code will be released on https://github.com/gjyin91/ZoomNet.Comment: 22 pages, 9 figures, accepted by ECCV 2018, the source code will be released on https://github.com/gjyin91/ZoomNe

    In Defense of the Triplet Loss Again: Learning Robust Person Re-Identification with Fast Approximated Triplet Loss and Label Distillation

    Full text link
    The comparative losses (typically, triplet loss) are appealing choices for learning person re-identification (ReID) features. However, the triplet loss is computationally much more expensive than the (practically more popular) classification loss, limiting their wider usage in massive datasets. Moreover, the abundance of label noise and outliers in ReID datasets may also put the margin-based loss in jeopardy. This work addresses the above two shortcomings of triplet loss, extending its effectiveness to large-scale ReID datasets with potentially noisy labels. We propose a fast-approximated triplet (FAT) loss, which provably converts the point-wise triplet loss into its upper bound form, consisting of a point-to-set loss term plus cluster compactness regularization. It preserves the effectiveness of triplet loss, while leading to linear complexity to the training set size. A label distillation strategy is further designed to learn refined soft-labels in place of the potentially noisy labels, from only an identified subset of confident examples, through teacher-student networks. We conduct extensive experiments on three most popular ReID benchmarks (Market-1501, DukeMTMC-reID, and MSMT17), and demonstrate that FAT loss with distilled labels lead to ReID features with remarkable accuracy, efficiency, robustness, and direct transferability to unseen datasets

    Improving Face Recognition from Hard Samples via Distribution Distillation Loss

    Full text link
    Large facial variations are the main challenge in face recognition. To this end, previous variation-specific methods make full use of task-related prior to design special network losses, which are typically not general among different tasks and scenarios. In contrast, the existing generic methods focus on improving the feature discriminability to minimize the intra-class distance while maximizing the interclass distance, which perform well on easy samples but fail on hard samples. To improve the performance on those hard samples for general tasks, we propose a novel Distribution Distillation Loss to narrow the performance gap between easy and hard samples, which is a simple, effective and generic for various types of facial variations. Specifically, we first adopt state-of-the-art classifiers such as ArcFace to construct two similarity distributions: teacher distribution from easy samples and student distribution from hard samples. Then, we propose a novel distribution-driven loss to constrain the student distribution to approximate the teacher distribution, which thus leads to smaller overlap between the positive and negative pairs in the student distribution. We have conducted extensive experiments on both generic large-scale face benchmarks and benchmarks with diverse variations on race, resolution and pose. The quantitative results demonstrate the superiority of our method over strong baselines, e.g., Arcface and Cosface.Comment: ECCV202
    corecore