288 research outputs found

    A NOVEL JOINT PERCEPTUAL ENCRYPTION AND WATERMARKING SCHEME (JPEW) WITHIN JPEG FRAMEWORK

    Get PDF
    Due to the rapid growth in internet and multimedia technologies, many new commercial applications like video on demand (VOD), pay-per-view and real-time multimedia broadcast etc, have emerged. To ensure the integrity and confidentiality of the multimedia content, the content is usually watermarked and then encrypted or vice versa. If the multimedia content needs to be watermarked and encrypted at the same time, the watermarking function needs to be performed first followed by encryption function. Hence, if the watermark needs to be extracted then the multimedia data needs to be decrypted first followed by extraction of the watermark. This results in large computational overhead. The solution provided in the literature for this problem is by using what is called partial encryption, in which media data are partitioned into two parts - one to be watermarked and the other is encrypted. In addition, some multimedia applications i.e. video on demand (VOD), Pay-TV, pay-per-view etc, allow multimedia content preview which involves „perceptual‟ encryption wherein all or some selected part of the content is, perceptually speaking, distorted with an encryption key. Up till now no joint perceptual encryption and watermarking scheme has been proposed in the literature. In this thesis, a novel Joint Perceptual Encryption and Watermarking (JPEW) scheme is proposed that is integrated within JPEG standard. The design of JPEW involves the design and development of both perceptual encryption and watermarking schemes that are integrated in JPEG and feasible within the „partial‟ encryption framework. The perceptual encryption scheme exploits the energy distribution of AC components and DC components bitplanes of continuous-tone images and is carried out by selectively encrypting these AC coefficients and DC components bitplanes. The encryption itself is based on a chaos-based permutation reported in an earlier work. Similarly, in contrast to the traditional watermarking schemes, the proposed watermarking scheme makes use of DC component of the image and it is carried out by selectively substituting certain bitplanes of DC components with watermark bits. vi ii Apart from the aforesaid JPEW, additional perceptual encryption scheme, integrated in JPEG, has also been proposed. The scheme is outside of joint framework and implements perceptual encryption on region of interest (ROI) by scrambling the DCT blocks of the chosen ROI. The performances of both, perceptual encryption and watermarking schemes are evaluated and compared with Quantization Index modulation (QIM) based watermarking scheme and reversible Histogram Spreading (RHS) based perceptual encryption scheme. The results show that the proposed watermarking scheme is imperceptible and robust, and suitable for authentication. Similarly, the proposed perceptual encryption scheme outperforms the RHS based scheme in terms of number of operations required to achieve a given level of perceptual encryption and provides control over the amount of perceptual encryption. The overall security of the JPEW has also been evaluated. Additionally, the performance of proposed separate perceptual encryption scheme has been thoroughly evaluated in terms of security and compression efficiency. The scheme is found to be simpler in implementation, have insignificant effect on compression ratios and provide more options for the selection of control factor

    Entropy in Image Analysis III

    Get PDF
    Image analysis can be applied to rich and assorted scenarios; therefore, the aim of this recent research field is not only to mimic the human vision system. Image analysis is the main methods that computers are using today, and there is body of knowledge that they will be able to manage in a totally unsupervised manner in future, thanks to their artificial intelligence. The articles published in the book clearly show such a future

    A Comprehensive Review on Medical Image Steganography Based on LSB Technique and Potential Challenges

    Get PDF
    The rapid development of telemedicine services and the requirements for exchanging medical information between physicians, consultants, and health institutions have made the protection of patients’ information an important priority for any future e-health system. The protection of medical information, including the cover (i.e. medical image), has a specificity that slightly differs from the requirements for protecting other information. It is necessary to preserve the cover greatly due to its importance on the reception side as medical staff use this information to provide a diagnosis to save a patient's life. If the cover is tampered with, this leads to failure in achieving the goal of telemedicine. Therefore, this work provides an investigation of information security techniques in medical imaging, focusing on security goals. Encrypting a message before hiding them gives an extra layer of security, and thus, will provide an excellent solution to protect the sensitive information of patients during the sharing of medical information. Medical image steganography is a special case of image steganography, while Digital Imaging and Communications in Medicine (DICOM) is the backbone of all medical imaging divisions, whereby it is most broadly used to store and transmit medical images. The main objective of this study is to provide a general idea of what Least Significant Bit-based (LSB) steganography techniques have achieved in medical images

    Transparent encryption with scalable video communication: Lower-latency, CABAC-based schemes

    Get PDF
    Selective encryption masks all of the content without completely hiding it, as full encryption would do at a cost in encryption delay and increased bandwidth. Many commercial applications of video encryption do not even require selective encryption, because greater utility can be gained from transparent encryption, i.e. allowing prospective viewers to glimpse a reduced quality version of the content as a taster. Our lightweight selective encryption scheme when applied to scalable video coding is well suited to transparent encryption. The paper illustrates the gains in reducing delay and increased distortion arising from a transparent encryption that leaves reduced quality base layer in the clear. Reduced encryption of B-frames is a further step beyond transparent encryption in which the computational overhead reduction is traded against content security and limited distortion. This spectrum of video encryption possibilities is analyzed in this paper, though all of the schemes maintain decoder compatibility and add no bitrate overhead as a result of jointly encoding and encrypting the input video by virtue of carefully selecting the entropy coding parameters that are encrypted. The schemes are suitable both for H.264 and HEVC codecs, though demonstrated in the paper for H.264. Selected Content Adaptive Binary Arithmetic Coding (CABAC) parameters are encrypted by a lightweight Exclusive OR technique, which is chosen for practicality

    A NOVEL JOINT PERCEPTUAL ENCRYPTION AND WATERMARKING SCHEME (JPEW) WITHIN JPEG FRAMEWORK

    Get PDF
    Due to the rapid growth in internet and multimedia technologies, many new commercial applications like video on demand (VOD), pay-per-view and real-time multimedia broadcast etc, have emerged. To ensure the integrity and confidentiality of the multimedia content, the content is usually watermarked and then encrypted or vice versa. If the multimedia content needs to be watermarked and encrypted at the same time, the watermarking function needs to be performed first followed by encryption function. Hence, if the watermark needs to be extracted then the multimedia data needs to be decrypted first followed by extraction of the watermark. This results in large computational overhead. The solution provided in the literature for this problem is by using what is called partial encryption, in which media data are partitioned into two parts - one to be watermarked and the other is encrypted. In addition, some multimedia applications i.e. video on demand (VOD), Pay-TV, pay-per-view etc, allow multimedia content preview which involves „perceptual‟ encryption wherein all or some selected part of the content is, perceptually speaking, distorted with an encryption key. Up till now no joint perceptual encryption and watermarking scheme has been proposed in the literature. In this thesis, a novel Joint Perceptual Encryption and Watermarking (JPEW) scheme is proposed that is integrated within JPEG standard. The design of JPEW involves the design and development of both perceptual encryption and watermarking schemes that are integrated in JPEG and feasible within the „partial‟ encryption framework. The perceptual encryption scheme exploits the energy distribution of AC components and DC components bitplanes of continuous-tone images and is carried out by selectively encrypting these AC coefficients and DC components bitplanes. The encryption itself is based on a chaos-based permutation reported in an earlier work. Similarly, in contrast to the traditional watermarking schemes, the proposed watermarking scheme makes use of DC component of the image and it is carried out by selectively substituting certain bitplanes of DC components with watermark bits. vi ii Apart from the aforesaid JPEW, additional perceptual encryption scheme, integrated in JPEG, has also been proposed. The scheme is outside of joint framework and implements perceptual encryption on region of interest (ROI) by scrambling the DCT blocks of the chosen ROI. The performances of both, perceptual encryption and watermarking schemes are evaluated and compared with Quantization Index modulation (QIM) based watermarking scheme and reversible Histogram Spreading (RHS) based perceptual encryption scheme. The results show that the proposed watermarking scheme is imperceptible and robust, and suitable for authentication. Similarly, the proposed perceptual encryption scheme outperforms the RHS based scheme in terms of number of operations required to achieve a given level of perceptual encryption and provides control over the amount of perceptual encryption. The overall security of the JPEW has also been evaluated. Additionally, the performance of proposed separate perceptual encryption scheme has been thoroughly evaluated in terms of security and compression efficiency. The scheme is found to be simpler in implementation, have insignificant effect on compression ratios and provide more options for the selection of control factor

    Image Compression Techniques: A Survey in Lossless and Lossy algorithms

    Get PDF
    The bandwidth of the communication networks has been increased continuously as results of technological advances. However, the introduction of new services and the expansion of the existing ones have resulted in even higher demand for the bandwidth. This explains the many efforts currently being invested in the area of data compression. The primary goal of these works is to develop techniques of coding information sources such as speech, image and video to reduce the number of bits required to represent a source without significantly degrading its quality. With the large increase in the generation of digital image data, there has been a correspondingly large increase in research activity in the field of image compression. The goal is to represent an image in the fewest number of bits without losing the essential information content within. Images carry three main type of information: redundant, irrelevant, and useful. Redundant information is the deterministic part of the information, which can be reproduced without loss from other information contained in the image. Irrelevant information is the part of information that has enormous details, which are beyond the limit of perceptual significance (i.e., psychovisual redundancy). Useful information, on the other hand, is the part of information, which is neither redundant nor irrelevant. Human usually observes decompressed images. Therefore, their fidelities are subject to the capabilities and limitations of the Human Visual System. This paper provides a survey on various image compression techniques, their limitations, compression rates and highlights current research in medical image compression
    • …
    corecore