1,124 research outputs found

    Fast computation of Tukey trimmed regions and median in dimension p>2p>2

    Full text link
    Given data in Rp\mathbb{R}^{p}, a Tukey κ\kappa-trimmed region is the set of all points that have at least Tukey depth κ\kappa w.r.t. the data. As they are visual, affine equivariant and robust, Tukey regions are useful tools in nonparametric multivariate analysis. While these regions are easily defined and interpreted, their practical use in applications has been impeded so far by the lack of efficient computational procedures in dimension p>2p > 2. We construct two novel algorithms to compute a Tukey κ\kappa-trimmed region, a na\"{i}ve one and a more sophisticated one that is much faster than known algorithms. Further, a strict bound on the number of facets of a Tukey region is derived. In a large simulation study the novel fast algorithm is compared with the na\"{i}ve one, which is slower and by construction exact, yielding in every case the same correct results. Finally, the approach is extended to an algorithm that calculates the innermost Tukey region and its barycenter, the Tukey median

    Multidimensional trimming based on projection depth

    Full text link
    As estimators of location parameters, univariate trimmed means are well known for their robustness and efficiency. They can serve as robust alternatives to the sample mean while possessing high efficiencies at normal as well as heavy-tailed models. This paper introduces multidimensional trimmed means based on projection depth induced regions. Robustness of these depth trimmed means is investigated in terms of the influence function and finite sample breakdown point. The influence function captures the local robustness whereas the breakdown point measures the global robustness of estimators. It is found that the projection depth trimmed means are highly robust locally as well as globally. Asymptotics of the depth trimmed means are investigated via those of the directional radius of the depth induced regions. The strong consistency, asymptotic representation and limiting distribution of the depth trimmed means are obtained. Relative to the mean and other leading competitors, the depth trimmed means are highly efficient at normal or symmetric models and overwhelmingly more efficient when these models are contaminated. Simulation studies confirm the validity of the asymptotic efficiency results at finite samples.Comment: Published at http://dx.doi.org/10.1214/009053606000000713 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Regression Depth and Center Points

    Get PDF
    We show that, for any set of n points in d dimensions, there exists a hyperplane with regression depth at least ceiling(n/(d+1)). as had been conjectured by Rousseeuw and Hubert. Dually, for any arrangement of n hyperplanes in d dimensions there exists a point that cannot escape to infinity without crossing at least ceiling(n/(d+1)) hyperplanes. We also apply our approach to related questions on the existence of partitions of the data into subsets such that a common plane has nonzero regression depth in each subset, and to the computational complexity of regression depth problems.Comment: 14 pages, 3 figure

    Projective Bundle Adjustment from Arbitrary Initialization Using the Variable Projection Method

    Get PDF
    Bundle adjustment is used in structure-from-motion pipelines as final refinement stage requiring a sufficiently good initialization to reach a useful local mininum. Starting from an arbitrary initialization almost always gets trapped in a poor minimum. In this work we aim to obtain an initialization-free approach which returns global minima from a large proportion of purely random starting points. Our key inspiration lies in the success of the Variable Projection (VarPro) method for affine factorization problems, which have close to 100% chance of reaching a global minimum from random initialization. We find empirically that this desirable behaviour does not directly carry over to the projective case, and we consequently design and evaluate strategies to overcome this limitation. Also, by unifying the affine and the projective camera settings, we obtain numerically better conditioned reformulations of original bundle adjustment algorithms

    A data driven equivariant approach to constrained Gaussian mixture modeling

    Full text link
    Maximum likelihood estimation of Gaussian mixture models with different class-specific covariance matrices is known to be problematic. This is due to the unboundedness of the likelihood, together with the presence of spurious maximizers. Existing methods to bypass this obstacle are based on the fact that unboundedness is avoided if the eigenvalues of the covariance matrices are bounded away from zero. This can be done imposing some constraints on the covariance matrices, i.e. by incorporating a priori information on the covariance structure of the mixture components. The present work introduces a constrained equivariant approach, where the class conditional covariance matrices are shrunk towards a pre-specified matrix Psi. Data-driven choices of the matrix Psi, when a priori information is not available, and the optimal amount of shrinkage are investigated. The effectiveness of the proposal is evaluated on the basis of a simulation study and an empirical example
    corecore