13 research outputs found

    Synthesis, Interdiction, and Protection of Layered Networks

    Get PDF
    This research developed the foundation, theory, and framework for a set of analysis techniques to assist decision makers in analyzing questions regarding the synthesis, interdiction, and protection of infrastructure networks. This includes extension of traditional network interdiction to directly model nodal interdiction; new techniques to identify potential targets in social networks based on extensions of shortest path network interdiction; extension of traditional network interdiction to include layered network formulations; and develops models/techniques to design robust layered networks while considering trade-offs with cost. These approaches identify the maximum protection/disruption possible across layered networks with limited resources, find the most robust layered network design possible given the budget limitations while ensuring that the demands are met, include traditional social network analysis, and incorporate new techniques to model the interdiction of nodes and edges throughout the formulations. In addition, the importance and effects of multiple optimal solutions for these (and similar) models is investigated. All the models developed are demonstrated on notional examples and were tested on a range of sample problem sets

    Multiple Allocation Hub Interdiction and Protection Problems: Model Formulations and Solution Approaches

    Get PDF
    In this paper, we present computationally efficient formulations for the multiple allocation hub interdiction and hub protection problems, which are bilevel and trilevel mixed integer linear programs, respectively. In the hub interdiction problem, the aim is to identify a subset of r critical hubs from an existing set of p hubs that when interdicted results in the maximum post-interdiction cost of routing flows. We present two alternate ways of reducing the bilevel hub interdiction model to a single level optimization problem. The first approach uses the dual formulation of the lower level problem. The second approach exploits the structure of the lower level problem to replace it by a set of closest assignment constraints (CACs). We present alternate sets of CACs, study their dominance relationships, and report their computational performances. Further, we propose refinements to CACs that offer computational advantages of an order-of-magnitude compared to the one existing in the literature. Further, our proposed modifications offer structural advantages for Benders decomposition, which lead to substantial computational savings, particularly for large problem instances. Finally, we study and solve large scale instances of the trilevel hub protection problem exactly by utilizing the ideas developed for the hub interdiction problem

    Optimizing dynamic investment decisions for railway systems protection

    Get PDF
    Past and recent events have shown that railway infrastructure systems are particularly vulnerable to natural catastrophes, unintentional accidents and terrorist attacks. Protection investments are instrumental in reducing economic losses and preserving public safety. A systematic approach to plan security investments is paramount to guarantee that limited protection resources are utilized in the most efficient manner. In this article, we present an optimization model to identify the railway assets which should be protected to minimize the impact of worst case disruptions on passenger flows. We consider a dynamic investment problem where protection resources become available over a planning horizon. The problem is formulated as a bilevel mixed-integer model and solved using two different decomposition approaches. Random instances of different sizes are generated to compare the solution algorithms. The model is then tested on the Kent railway network to demonstrate how the results can be used to support efficient protection decisions

    Multi-Level Multi-Objective Programming and Optimization for Integrated Air Defense System Disruption

    Get PDF
    The U.S. military\u27s ability to project military force is being challenged. This research develops and demonstrates the application of three respective sensor location, relocation, and network intrusion models to provide the mathematical basis for the strategic engagement of emerging technologically advanced, highly-mobile, Integrated Air Defense Systems. First, we propose a bilevel mathematical programming model for locating a heterogeneous set of sensors to maximize the minimum exposure of an intruder\u27s penetration path through a defended region. Next, we formulate a multi-objective, bilevel optimization model to relocate surviving sensors to maximize an intruder\u27s minimal expected exposure to traverse a defended border region, minimize the maximum sensor relocation time, and minimize the total number of sensors requiring relocation. Lastly, we present a trilevel, attacker-defender-attacker formulation for the heterogeneous sensor network intrusion problem to optimally incapacitate a subset of the defender\u27s sensors and degrade a subset of the defender\u27s network to ultimately determine the attacker\u27s optimal penetration path through a defended network

    Assessing Protection Strategies for Urban Rail Transit Systems: A Case-Study on the Central London Underground

    Get PDF
    Urban rail transit systems are highly prone to disruptions of various nature (e.g., accidental, environmental, man-made). Railway networks are deemed as critical infrastructures given that a service interruption can prompt adverse consequences on entire communities and lead to potential far-reaching effects. Hence, the identification of optimal strategies to mitigate the negative impact of disruptive events is paramount to increase railway systems’ resilience. In this paper, we investigate several protection strategies deriving from the application of either single asset vulnerability metrics or systemic optimization models. The contribution of this paper is threefold. Firstly, a single asset metric combining connectivity, path length and flow is defined, namely the Weighted Node Importance Evaluation Index (WI). Secondly, a novel bi-level multi-criteria optimisation model, called the Railway Fortification Problem (RFP), is introduced. RFP identifies protection strategies based on stations connectivity, path length, or travel demand, considered as either individual or combined objectives. Finally, two different protection strategy approaches are applied to a Central London Underground case study: a sequential approach based on single-asset metrics and an integrated approach based on RFP. Results indicate that the integrated approach outperforms the sequential approach and identifies more robust protection plans with respect to different vulnerability criteria. View Full-Tex

    A dynamic model for road protection against flooding

    Get PDF
    This paper focuses on the problem of identifying optimal protection strategies to reduce the impact of flooding on a road network. We propose a dynamic mixed-integer programming model that extends the classic concept of road network protection by shifting away from single-arc fortifications to a more general and realistic approach involving protection plans that cover multiple components. We also consider multiple disruption scenarios of varying magnitude. To efficiently solve large problem instances, we introduce a customised GRASP heuristic. Finally, we provide some analysis and insights from a case study of the Hertfordshire road network in the East of England. Results show that optimal protection strategies mainly involve safeguarding against flooding events that are small and likely to occur, whereas implementing higher protection standards are not considered cost-effective

    Optimization Approaches To Protect Transportation Infrastructure Against Strategic and Random Disruptions

    Get PDF
    Past and recent events have proved that critical infrastructure are vulnerable to natural catastrophes, unintentional accidents and terrorist attacks. Protecting these systems is critical to avoid loss of life and to guard against economical upheaval. A systematic approach to plan security investments is paramount to guarantee that limited protection resources are utilized in the most effcient manner. This thesis provides a detailed review of the optimization models that have been introduced in the past to identify vulnerabilities and protection plans for critical infrastructure. The main objective of this thesis is to study new and more realistic models to protect transportation infrastructure such as railway and road systems against man made and natural disruptions. Solution algorithms are devised to effciently solve the complex formulations proposed. Finally, several illustrative case studies are analysed to demonstrate how solving these models can be used to support effcient protection decisions

    Optimization Approaches for Improving Mitigation and Response Operations in Disaster Management

    Get PDF
    Disasters are calamitous events that severely affect the life conditions of an entire community, being the disasters either nature-based (e.g., earthquake) or man-made (e.g., terroristic attack). Disaster-related issues are usually dealt with according to the Disaster Operations Management (DOM) framework, which is composed of four phases: mitigation and preparedness, which address pre-disaster issues, and response and recovery, which tackle problems arising after the occurrence of a disaster. The ultimate scope of this dissertation is to present novel optimization models and algorithms aimed at improving operations belonging to the mitigation and response phases of the DOM. On the mitigation side, this thesis focuses on the protection of Critical Information Infrastructures (CII), which are commonly deemed to include communication and information networks. The majority of all the other Critical Infrastructures (CI), such as electricity, fuel and water supply as well as transportation systems, are crucially dependent on CII. Therefore, problems associated with CII that disrupt the services they are able to provide (whether to a single end-user or to another CI) are of increasing interest. This dissertation reviews several issues emerging in the Critical Information Infrastructures Protection (CIIP), field such as: how to identify the most critical components of a communication network whose disruption would affect the overall system functioning; how to mitigate the consequences of such calamitous events through protection strategies; and how to design a system which is intrinsically able to hedge against disruptions. To this end, this thesis provides a description of the seminal optimization models that have been developed to address the aforementioned issues in the general field of Critical Infrastructures Protection (CIP). Models are grouped in three categories which address the aforementioned issues: survivability-oriented interdiction, resource allocation strategy, and survivable design models; existing models are reviewed and possible extensions are proposed. In fact, some models have already been developed for CII (i.e., survivability-interdiction and design models), while others have been adapted from the literature on other CI (i.e., resource allocation strategy models). The main gap emerging in the CII field is that CII protection has been quite overlooked which has led to review optimization models that have been developed for the protection of other CI. Hence, this dissertation contributes to the literature in the field by also providing a survey of the multi-level programs that have been developed for protecting supply chains, transportation systems (e.g., railway infrastructures), and utility networks (e.g., power and water supply systems), in order to adapt them for CII protection. Based on the review outcomes, this thesis proposes a novel linear bi-level program for CIIP to mitigate worst-case disruptions through protection investments entailing network design operations, namely the Critical Node Detection Problem with Fortification (CNDPF), which integrates network survivability assessment, resource allocation strategies and design operations. To the best of my knowledge, this is the first bi-level program developed for CIIP. The model is solved through a Super Valid Inequalities (SVI) decomposition approach and a Greedy Constructive and Local Search (GCLS) heuristic. Computational results are reported for real communication networks and for different levels of both disaster magnitude and protection resources. On the response side, this thesis identifies the current challenges in devising realistic and applicable optimization models in the shelter location and evacuation routing context and outlines a roadmap for future research in this topical area. A shelter is a facility where people belonging to a community hit by a disaster are provided with different kinds of services (e.g., medical assistance, food). The role of a shelter is fundamental for two categories of people: those who are unable to make arrangements to other safe places (e.g., family or friends are too far), and those who belong to special-needs populations (e.g., disabled, elderly). People move towards shelter sites, or alternative safe destinations, when they either face or are going to face perilous circumstances. The process of leaving their own houses to seek refuge in safe zones goes under the name of evacuation. Two main types of evacuation can be identified: self-evacuation (or car-based evacuation) where individuals move towards safe sites autonomously, without receiving any kind of assistance from the responder community, and supported evacuation where special-needs populations (e.g., disabled, elderly) require support from emergency services and public authorities to reach some shelter facilities. This dissertation aims at identifying the central issues that should be addressed in a comprehensive shelter location/evacuation routing model. This is achieved by a novel meta-analysis that entail: (1) analysing existing disaster management surveys, (2) reviewing optimization models tackling shelter location and evacuation routing operations, either separately or in an integrated manner, (3) performing a critical analysis of existing papers combining shelter location and evacuation routing, concurrently with the responses of their authors, and (4) comparing the findings of the analysis of the papers with the findings of the existing disaster management surveys. The thesis also provides a discussion on the emergent challenges of shelter location and evacuation routing in optimization such as the need for future optimization models to involve stakeholders, include evacuee as well as system behaviour, be application-oriented rather than theoretical or model-driven, and interdisciplinary and, eventually, outlines a roadmap for future research. Based on the identified challenges, this thesis presents a novel scenario-based mixed-integer program which integrates shelter location, self-evacuation and supported-evacuation decisions, namely the Scenario-Indexed Shelter Location and Evacuation Routing (SISLER) problem. To the best of my knowledges, this is the second model including shelter location, self-evacuation and supported-evacuation however, SISLER deals with them based on the provided meta-analysis. The model is solved through a Branch-and-Cut algorithm of an off-the-shelf software, enriched with valid inequalities adapted from the literature. Computational results are reported for both testbed instances and a realistic case study

    Locating and Protecting Facilities Subject to Random Disruptions and Attacks

    Get PDF
    Recent events such as the 2011 Tohoku earthquake and tsunami in Japan have revealed the vulnerability of networks such as supply chains to disruptive events. In particular, it has become apparent that the failure of a few elements of an infrastructure system can cause a system-wide disruption. Thus, it is important to learn more about which elements of infrastructure systems are most critical and how to protect an infrastructure system from the effects of a disruption. This dissertation seeks to enhance the understanding of how to design and protect networked infrastructure systems from disruptions by developing new mathematical models and solution techniques and using them to help decision-makers by discovering new decision-making insights. Several gaps exist in the body of knowledge concerning how to design and protect networks that are subject to disruptions. First, there is a lack of insights on how to make equitable decisions related to designing networks subject to disruptions. This is important in public-sector decision-making where it is important to generate solutions that are equitable across multiple stakeholders. Second, there is a lack of models that integrate system design and system protection decisions. These models are needed so that we can understand the benefit of integrating design and protection decisions. Finally, most of the literature makes several key assumptions: 1) protection of infrastructure elements is perfect, 2) an element is either fully protected or fully unprotected, and 3) after a disruption facilities are either completely operational or completely failed. While these may be reasonable assumptions in some contexts, there may exist contexts in which these assumptions are limiting. There are several difficulties with filling these gaps in the literature. This dissertation describes the discovery of mathematical formulations needed to fill these gaps as well as the identification of appropriate solution strategies

    An investigation of models for identifying critical components in a system.

    Get PDF
    Lai, Tsz Wai.Thesis (M.Phil.)--Chinese University of Hong Kong, 2011.Includes bibliographical references (leaves 193-207).Abstracts in English and Chinese.Chapter 1 --- Introduction --- p.1Chapter 1.1 --- Overview --- p.1Chapter 1.2 --- Contributions --- p.2Chapter 1.3 --- Organization --- p.2Chapter 2 --- Literature Review --- p.4Chapter 2.1 --- Taxonomy --- p.4Chapter 2.2 --- Design of Infrastructure --- p.6Chapter 2.2.1 --- Facility Location Models --- p.7Chapter 2.2.1.1 --- Random Breakdowns --- p.7Chapter 2.2.1.2 --- Deliberate Attacks --- p.8Chapter 2.2.2 --- Network Design Models --- p.9Chapter 2.3 --- Protection of Existing Components --- p.10Chapter 2.3.1 --- Interdiction Models --- p.11Chapter 2.3.2 --- Facility Location Models --- p.12Chapter 2.3.2.1 --- Random Breakdowns --- p.12Chapter 2.3.2.2 --- Deliberate Attacks --- p.12Chapter 2.3.3 --- Network Design Models --- p.14Chapter 3 --- Identifying Critical Facilities: Median Problem --- p.16Chapter 3.1 --- Introduction --- p.16Chapter 3.2 --- Problem Formulation --- p.18Chapter 3.2.1 --- The p-Median Problem --- p.18Chapter 3.2.1.1 --- A Toy Example --- p.19Chapter 3.2.1.2 --- Problem Definition --- p.21Chapter 3.2.1.3 --- Mathematical Model --- p.22Chapter 3.2.2 --- The r-Interdiction Median Problem --- p.24Chapter 3.2.2.1 --- The Toy Example --- p.24Chapter 3.2.2.2 --- Problem Definition --- p.27Chapter 3.2.2.3 --- Mathematical Model --- p.28Chapter 3.2.3 --- The r-Interdiction Median Problem with Fortification --- p.29Chapter 3.2.3.1 --- The Toy Example --- p.30Chapter 3.2.3.2 --- Problem Definition --- p.32Chapter 3.2.3.3 --- Mathematical Model --- p.33Chapter 3.2.4 --- The r-Interdiction Median Problem with Fortification (Bilevel Formulation) --- p.35Chapter 3.2.4.1 --- Mathematical Model --- p.36Chapter 3.3 --- Solution Methodologies --- p.38Chapter 3.3.1 --- Model Reduction --- p.38Chapter 3.3.2 --- Variable Consolidation --- p.40Chapter 3.3.3 --- Implicit Enumeration --- p.45Chapter 3.4 --- Results and Discussion --- p.48Chapter 3.4.1 --- Data Sets --- p.48Chapter 3.4.1.1 --- Swain --- p.48Chapter 3.4.1.2 --- London --- p.49Chapter 3.4.1.3 --- Alberta --- p.49Chapter 3.4.2 --- Computational Study --- p.50Chapter 3.4.2.1 --- The p-Median Problem --- p.50Chapter 3.4.2.2 --- The r-Interdiction Median Problem --- p.58Chapter 3.4.2.3 --- The r-Interdiction Median Problem with Fortification --- p.63Chapter 3.4.2.4 --- The r-Interdiction Median Problem with Fortification (Bilevel Formulation) --- p.68Chapter 3.5 --- Summary --- p.76Chapter 4 --- Hybrid Approaches --- p.79Chapter 4.1 --- Framework --- p.80Chapter 4.2 --- Tabu Assisted Heuristic Search --- p.81Chapter 4.2.1 --- A Tabu Assisted Heuristic Search Construct --- p.83Chapter 4.2.1.1 --- Search Space --- p.84Chapter 4.2.1.2 --- Initial Trial Solution --- p.85Chapter 4.2.1.3 --- Neighborhood Structure --- p.85Chapter 4.2.1.4 --- Local Search Procedure --- p.86Chapter 4.2.1.5 --- Form of Tabu Moves --- p.88Chapter 4.2.1.6 --- Addition of a Tabu Move --- p.88Chapter 4.2.1.7 --- Maximum Size of Tabu List --- p.89Chapter 4.2.1.8 --- Termination Criterion --- p.89Chapter 4.3 --- Hybrid Simulated Annealing Search --- p.90Chapter 4.3.1 --- A Hybrid Simulated Annealing Construct --- p.91Chapter 4.3.1.1 --- Random Selection of Immediate Neighbor --- p.92Chapter 4.3.1.2 --- Cooling Schedule --- p.93Chapter 4.3.1.3 --- Termination Criterion --- p.94Chapter 4.4 --- Hybrid Genetic Search Algorithm --- p.95Chapter 4.4.1 --- A Hybrid Genetic Search Construct --- p.99Chapter 4.4.1.1 --- Search Space --- p.99Chapter 4.4.1.2 --- Initial Population --- p.100Chapter 4.4.1.3 --- Selection --- p.104Chapter 4.4.1.4 --- Crossover --- p.105Chapter 4.4.1.5 --- Mutation --- p.106Chapter 4.4.1.6 --- New Population --- p.108Chapter 4.4.1.7 --- Termination Criterion --- p.109Chapter 4.5 --- Further Assessment --- p.109Chapter 4.6 --- Computational Study --- p.114Chapter 4.6.1 --- Parameter Selection --- p.115Chapter 4.6.1.1 --- Tabu Assisted Heuristic Search --- p.115Chapter 4.6.1.2 --- Hybrid Simulated Annealing Approach --- p.121Chapter 4.6.1.3 --- Hybrid Genetic Search Algorithm --- p.124Chapter 4.6.2 --- Expected Performance --- p.128Chapter 4.6.2.1 --- Tabu Assisted Heuristic Search --- p.128Chapter 4.6.2.2 --- Hybrid Simulated Annealing Approach --- p.138Chapter 4.6.2.3 --- Hybrid Genetic Search Algorithm --- p.146Chapter 4.6.2.4 --- Overall Comparison --- p.150Chapter 4.7 --- Summary --- p.153Chapter 5 --- A Special Case of the Median Problems --- p.156Chapter 5.1 --- Introduction --- p.157Chapter 5.2 --- Problem Formulation --- p.158Chapter 5.2.1 --- The r-Interdiction Covering Problem --- p.158Chapter 5.2.1.1 --- Problem Definition --- p.159Chapter 5.2.1.2 --- Mathematical Model --- p.160Chapter 5.2.2 --- The r-Interdiction Covering Problem with Fortification --- p.162Chapter 5.2.2.1 --- Problem Definition --- p.163Chapter 5.2.2.2 --- Mathematical Model --- p.164Chapter 5.2.3 --- The r-Interdiction Covering Problem with Fortification (Bilevel Formulation) --- p.167Chapter 5.2.3.1 --- Mathematical Model --- p.168Chapter 5.3 --- Theoretical Relationship --- p.170Chapter 5.4 --- Solution Methodologies --- p.172Chapter 5.5 --- Results and Discussion --- p.175Chapter 5.5.1 --- The r-Interdiction Covering Problem --- p.175Chapter 5.5.2 --- The r-Interdiction Covering Problem with Fortification --- p.178Chapter 5.5.3 --- The r-Interdiction Covering Problem with Fortification (Bilevel Formulation) --- p.182Chapter 5.6 --- Summary --- p.187Chapter 6 --- Conclusion --- p.189Chapter 6.1 --- Summary of Our Work --- p.189Chapter 6.2 --- Future Directions --- p.19
    corecore