90 research outputs found

    Two point block multistep methods with trigonometric−fitting for solving oscillatory problems

    Get PDF
    In this paper, we present the absolute stability of the existing 2-point implicit block multistep step methods of step number k = 3 and k = 5 and solving special second order ordinary differential equations (ODEs). The methods are then trigonometrically fitted so that they are suitable for solving highly oscillatory problems arising from the special second order ODEs. Their explicit counterparts are also trigonometrically fitted so that in the implementation the methods can act as a predictor-corrector pairs. The numerical results based on the integration over a large interval are given to show the performance of the proposed methods. From the numerical results we can conclude that the new trigonometrically-fitted methods are superior in terms of accuracy and execution time, compared to the existing methods in the scientific literature when used for solving problems which are oscillatory in nature

    A two-step trigonometrically fitted semi-implicit hybrid method for solving special second order oscillatory differential equation

    Get PDF
    In this paper, we derived a semi-implicit hybrid method (SIHM) which is a two-step method to solve special second order ordinary differential equations (ODEs). The SIHM which is three-stage and fourth-order is then trigonometrically fitted and denoted by TF-SIHM3(4). The method is constructed using trigonometrically fitted properties instead of using phase-lag and amplification properties. Numerical integration show that TF-SIHM3(4) is more accurate in term of accuracy compared to the existing explicit and implicit methods of the same order

    A Trigonometrically Fitted Block Method for Solving Oscillatory Second-Order Initial Value Problems and Hamiltonian Systems

    Get PDF
    In this paper, we present a block hybrid trigonometrically fitted Runge-Kutta-Nyström method (BHTRKNM), whose coefficients are functions of the frequency and the step-size for directly solving general second-order initial value problems (IVPs), including Hamiltonian systems such as the energy conserving equations and systems arising from the semidiscretization of partial differential equations (PDEs). Four discrete hybrid formulas used to formulate the BHTRKNM are provided by a continuous one-step hybrid trigonometrically fitted method with an off-grid point. We implement BHTRKNM in a block-by-block fashion; in this way, the method does not suffer from the disadvantages of requiring starting values and predictors which are inherent in predictor-corrector methods. The stability property of the BHTRKNM is discussed and the performance of the method is demonstrated on some numerical examples to show accuracy and efficiency advantages

    A Functionally-Fitted Block Numerov Method for Solving Second-Order Initial-Value Problems with Oscillatory Solutions

    Get PDF
    [EN] A functionally-fitted Numerov-type method is developed for the numerical solution of second-order initial-value problems with oscillatory solutions. The basis functions are considered among trigonometric and hyperbolic ones. The characteristics of the method are studied, particularly, it is shown that it has a third order of convergence for the general second-order ordinary differential equation, y′′=f(x,y,y′), it is a fourth order convergent method for the special second-order ordinary differential equation, y′′=f(x,y). Comparison with other methods in the literature, even of higher order, shows the good performance of the proposed method.Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.Publicación en abierto financiada por el Consorcio de Bibliotecas Universitarias de Castilla y León (BUCLE), con cargo al Programa Operativo 2014ES16RFOP009 FEDER 2014-2020 DE CASTILLA Y LEÓN, Actuación:20007-CL - Apoyo Consorcio BUCL
    corecore