97 research outputs found

    Extremal properties for dissections of convex 3-polytopes

    Get PDF
    A dissection of a convex d-polytope is a partition of the polytope into d-simplices whose vertices are among the vertices of the polytope. Triangulations are dissections that have the additional property that the set of all its simplices forms a simplicial complex. The size of a dissection is the number of d-simplices it contains. This paper compares triangulations of maximal size with dissections of maximal size. We also exhibit lower and upper bounds for the size of dissections of a 3-polytope and analyze extremal size triangulations for specific non-simplicial polytopes: prisms, antiprisms, Archimedean solids, and combinatorial d-cubes.Comment: 19 page

    Asymptotically efficient triangulations of the d-cube

    Full text link
    Let PP and QQ be polytopes, the first of "low" dimension and the second of "high" dimension. We show how to triangulate the product P×QP \times Q efficiently (i.e., with few simplices) starting with a given triangulation of QQ. Our method has a computational part, where we need to compute an efficient triangulation of P×ΔmP \times \Delta^m, for a (small) natural number mm of our choice. Δm\Delta^m denotes the mm-simplex. Our procedure can be applied to obtain (asymptotically) efficient triangulations of the cube InI^n: We decompose In=Ik×InkI^n = I^k \times I^{n-k}, for a small kk. Then we recursively assume we have obtained an efficient triangulation of the second factor and use our method to triangulate the product. The outcome is that using k=3k=3 and m=2m=2, we can triangulate InI^n with O(0.816nn!)O(0.816^{n} n!) simplices, instead of the O(0.840nn!)O(0.840^{n} n!) achievable before.Comment: 19 pages, 6 figures. Only minor changes from previous versions, some suggested by anonymous referees. Paper accepted in "Discrete and Computational Geometry

    The Gromov Norm of the Product of Two Surfaces

    Full text link
    We make an estimation of the value of the Gromov norm of the Cartesian product of two surfaces. Our method uses a connection between these norms and the minimal size of triangulations of the products of two polygons. This allows us to prove that the Gromov norm of this product is between 32 and 52 when both factors have genus 2. The case of arbitrary genera is easy to deduce form this one.Comment: The journal version contains an error that invalidates one direction of the main theorem. The present version contains an erratum, at the end, explaining thi

    On nonobtuse simplicial partitions

    Get PDF

    Enumerative Combinatorics

    Get PDF
    Enumerative Combinatorics focusses on the exact and asymptotic counting of combinatorial objects. It is strongly connected to the probabilistic analysis of large combinatorial structures and has fruitful connections to several disciplines, including statistical physics, algebraic combinatorics, graph theory and computer science. This workshop brought together experts from all these various fields, including also computer algebra, with the goal of promoting cooperation and interaction among researchers with largely varying backgrounds
    corecore