76 research outputs found

    Detecting Weakly Simple Polygons

    Full text link
    A closed curve in the plane is weakly simple if it is the limit (in the Fr\'echet metric) of a sequence of simple closed curves. We describe an algorithm to determine whether a closed walk of length n in a simple plane graph is weakly simple in O(n log n) time, improving an earlier O(n^3)-time algorithm of Cortese et al. [Discrete Math. 2009]. As an immediate corollary, we obtain the first efficient algorithm to determine whether an arbitrary n-vertex polygon is weakly simple; our algorithm runs in O(n^2 log n) time. We also describe algorithms that detect weak simplicity in O(n log n) time for two interesting classes of polygons. Finally, we discuss subtle errors in several previously published definitions of weak simplicity.Comment: 25 pages and 13 figures, submitted to SODA 201

    Shortest Path in a Polygon using Sublinear Space

    Get PDF
    \renewcommand{\Re}{{\rm I\!\hspace{-0.025em} R}} \newcommand{\SetX}{\mathsf{X}} \newcommand{\VorX}[1]{\mathcal{V} \pth{#1}} \newcommand{\Polygon}{\mathsf{P}} \newcommand{\Space}{\overline{\mathsf{m}}} \newcommand{\pth}[2][\!]{#1\left({#2}\right)} We resolve an open problem due to Tetsuo Asano, showing how to compute the shortest path in a polygon, given in a read only memory, using sublinear space and subquadratic time. Specifically, given a simple polygon \Polygon with nn vertices in a read only memory, and additional working memory of size \Space, the new algorithm computes the shortest path (in \Polygon) in O( n^2 /\, \Space ) expected time. This requires several new tools, which we believe to be of independent interest

    L_1 Shortest Path Queries among Polygonal Obstacles in the Plane

    Get PDF
    Given a point s and a set of h pairwise disjoint polygonal obstacles with a total of n vertices in the plane, after the free space is triangulated, we present an O(n+h log h) time and O(n) space algorithm for building a data structure (called shortest path map) of size O(n) such that for any query point t, the length of the L_1 shortest obstacle-avoiding path from s to t can be reported in O(log n) time and the actual path can be found in additional time proportional to the number of edges of the path. Previously, the best algorithm computes such a shortest path map in O(n log n) time and O(n) space. In addition, our techniques also yield an improved algorithm for computing the L_1 geodesic Voronoi diagram of m point sites among the obstacles

    Planar rectilinear shortest path computation using corridors

    Get PDF
    AbstractThe rectilinear shortest path problem can be stated as follows: given a set of m non-intersecting simple polygonal obstacles in the plane, find a shortest L1-metric (rectilinear) path from a point s to a point t that avoids all the obstacles. The path can touch an obstacle but does not cross it. This paper presents an algorithm with time complexity O(n+m(lgn)3/2), which is close to the known lower bound of Ω(n+mlgm) for finding such a path. Here, n is the number of vertices of all the obstacles together
    • …
    corecore