4 research outputs found

    The bottleneck degree of algebraic varieties

    Full text link
    A bottleneck of a smooth algebraic variety X⊂CnX \subset \mathbb{C}^n is a pair of distinct points (x,y)∈X(x,y) \in X such that the Euclidean normal spaces at xx and yy contain the line spanned by xx and yy. The narrowness of bottlenecks is a fundamental complexity measure in the algebraic geometry of data. In this paper we study the number of bottlenecks of affine and projective varieties, which we call the bottleneck degree. The bottleneck degree is a measure of the complexity of computing all bottlenecks of an algebraic variety, using for example numerical homotopy methods. We show that the bottleneck degree is a function of classical invariants such as Chern classes and polar classes. We give the formula explicitly in low dimension and provide an algorithm to compute it in the general case.Comment: Major revision. New introduction. Added some new illustrative lemmas and figures. Added pseudocode for the algorithm to compute bottleneck degree. Fixed some typo

    The reach, metric distortion, geodesic convexity and the variation of tangent spaces

    Get PDF
    In this paper we discuss three results. The first two concern general sets of positive reach: We first characterize the reach by means of a bound on the metric distortion between the distance in the ambient Euclidean space and the set of positive reach. Secondly, we prove that the intersection of a ball with radius less than the reach with the set is geodesically convex, meaning that the shortest path between any two points in the intersection lies itself in the intersection. For our third result we focus on manifolds with positive reach and give a bound on the angle between tangent spaces at two different points in terms of the distance between the points and the reach
    corecore