448 research outputs found

    Conditioning moments of singular measures for entropy optimization. I

    Get PDF
    In order to process a potential moment sequence by the entropy optimization method one has to be assured that the original measure is absolutely continuous with respect to Lebesgue measure. We propose a non-linear exponential transform of the moment sequence of any measure, including singular ones, so that the entropy optimization method can still be used in the reconstruction or approximation of the original. The Cauchy transform in one variable, used for this very purpose in a classical context by A.\ A.\ Markov and followers, is replaced in higher dimensions by the Fantappi\`{e} transform. Several algorithms for reconstruction from moments are sketched, while we intend to provide the numerical experiments and computational aspects in a subsequent article. The essentials of complex analysis, harmonic analysis, and entropy optimization are recalled in some detail, with the goal of making the main results more accessible to non-expert readers. Keywords: Fantappi\`e transform; entropy optimization; moment problem; tube domain; exponential transformComment: Submitted to Indagnationes Mathematicae, I. Gohberg Memorial issu

    Bernstein-Szego Polynomials Associated with Root Systems

    Full text link
    We introduce multivariate generalizations of the Bernstein-Szego polynomials, which are associated to the root systems of the complex simple Lie algebras. The multivariate polynomials in question generalize Macdonald's Hall-Littlewood polynomials associated with root systems. For the root system of type A1 (corresponding to the Lie algebra SL (2;C)) the classic Bernstein-Szego polynomials are recovered.Comment: LaTeX, 12 page

    Multivariate Splines and Algebraic Geometry

    Get PDF
    Multivariate splines are effective tools in numerical analysis and approximation theory. Despite an extensive literature on the subject, there remain open questions in finding their dimension, constructing local bases, and determining their approximation power. Much of what is currently known was developed by numerical analysts, using classical methods, in particular the so-called Bernstein-B´ezier techniques. Due to their many interesting structural properties, splines have become of keen interest to researchers in commutative and homological algebra and algebraic geometry. Unfortunately, these communities have not collaborated much. The purpose of the half-size workshop is to intensify the interaction between the different groups by bringing them together. This could lead to essential breakthroughs on several of the above problems

    Algorithms for curve design and accurate computations with totally positive matrices

    Get PDF
    Esta tesis doctoral se enmarca dentro de la teoría de la Positividad Total. Las matrices totalmente positivas han aparecido en aplicaciones de campos tan diversos como la Teoría de la Aproximación, la Biología, la Economía, la Combinatoria, la Estadística, las Ecuaciones Diferenciales, la Mecánica, el Diseño Geométrico Asistido por Ordenador o el Álgebra Numérica Lineal. En esta tesis nos centraremos en dos de los campos que están relacionados con matrices totalmente positivas.This doctoral thesis is framed within the theory of Total Positivity. Totally positive matrices have appeared in applications from fields as diverse as Approximation Theory, Biology, Economics, Combinatorics, Statistics, Differential Equations, Mechanics, Computer Aided Geometric Design or Linear Numerical Algebra. In this thesis, we will focus on two of the fields that are related to totally positive matrices.<br /

    Blending techniques in Curve and Surface constructions

    Get PDF
    Source at https://www.geofo.no/geofoN.html. <p
    corecore