446 research outputs found

    A Geometric Toolbox for Tetrahedral Finite Element Partitions

    Get PDF
    In this work we present a survey of some geometric results on tetrahedral partitions and their refinements in a unified manner. They can be used for mesh generation and adaptivity in practical calculations by the finite element method (FEM), and also in theoretical finite element (FE) analysis. Special emphasis is laid on the correspondence between relevant results and terminology used in FE computations, and those established in the area of discrete and computational geometry (DCG)

    An iterative interface reconstruction method for PLIC in general convex grids as part of a Coupled Level Set Volume of Fluid solver

    Get PDF
    Reconstructing the interface within a cell, based on volume fraction and normal direction, is a key part of multiphase flow solvers which make use of piecewise linear interface calculation (PLIC) such as the Coupled Level Set Volume of Fluid (CLSVOF) method. In this paper, we present an iterative method for interface reconstruction (IR) in general convex cells based on tetrahedral decomposition. By splitting the cell into tetrahedra prior to IR the volume of the truncated polyhedron can be calculated much more rapidly than using existing clipping and capping methods. In addition the root finding algorithm is designed to take advantage of the nature of the relationship between volume fraction and interface position by using a combination of Newton's and Muller's methods. In stand-alone tests of the IR algorithm on single cells with up to 20 vertices the proposed method was found to be 2 times faster than an implementation of an existing analytical method, while being easy to implement. It was also found to be 3.4–11.8 times faster than existing iterative methods using clipping and capping and combined with Brent's root finding method. Tests were then carried out of the IR method as part of a CLSVOF solver. For a sphere deformed by a prescribed velocity field the proposed method was found to be up to 33% faster than existing iterative methods. For simulations including the solution of the velocity field the maximum speed up was found to be approximately 52% for a case where 12% of cells lie on the interface. Analysis of the full simulation CPU time budget also indicates that while the proposed method has produced a considerable speed-up, further gains due to increasing the efficiency of the IR method are likely to be small as the IR step now represents only a small proportion of the run time

    Treewidth, crushing, and hyperbolic volume

    Get PDF
    We prove that there exists a universal constant cc such that any closed hyperbolic 3-manifold admits a triangulation of treewidth at most cc times its volume. The converse is not true: we show there exists a sequence of hyperbolic 3-manifolds of bounded treewidth but volume approaching infinity. Along the way, we prove that crushing a normal surface in a triangulation does not increase the carving-width, and hence crushing any number of normal surfaces in a triangulation affects treewidth by at most a constant multiple.Comment: 20 pages, 12 figures. V2: Section 4 has been rewritten, as the former argument (in V1) used a construction that relied on a wrong theorem. Section 5.1 has also been adjusted to the new construction. Various other arguments have been clarifie

    Tetrahedral Meshes in Biomedical Applications: Generation, Boundary Recovery and Quality Enhancements

    Get PDF
    Mesh generation is a fundamental precursor to finite element implementations for solution of partial differential equations in engineering and science. This dissertation advances the field in three distinct but coupled areas. A robust and fast three dimensional mesh generator for arbitrarily shaped geometries was developed. It deploys nodes throughout the domain based upon user-specified mesh density requirements. The system is integer and pixel based which eliminates round off errors, substantial memory requirements and cpu intensive calculations. Linked, but fully detachable, to the mesh generation system is a physical boundary recovery routine. Frequently, the original boundary topology is required for specific boundary condition applications or multiple material constraints. Historically, this boundary preservation was not available. An algorithm was developed, refined and optimized that recovers the original boundaries, internal and external, with fidelity. Finally, a node repositioning algorithm was developed that maximizes the minimum solid angle of tetrahedral meshes. The highly coveted 2D Delaunay property that maximizes the minimum interior angle of a triangle mesh does not extend to its 3D counterpart, to maximize the minimum solid angle of a tetrahedron mesh. As a consequence, 3D Delaunay created meshes have unacceptable sliver tetrahedral elements albeit composed of 4 high quality triangle sides. These compromised elements are virtually unavoidable and can foil an otherwise intact mesh. The numerical optimization routine developed takes any preexisting tetrahedral mesh and repositions the nodes without changing the mesh topology so that the minimum solid angle of the tetrahedrons is maximized. The overall quality enhancement of the volume mesh might be small, depending upon the initial mesh. However, highly distorted elements that create ill-conditioned global matrices and foil a finite element solver are enhanced significantly

    Flipping Cubical Meshes

    Full text link
    We define and examine flip operations for quadrilateral and hexahedral meshes, similar to the flipping transformations previously used in triangular and tetrahedral mesh generation.Comment: 20 pages, 24 figures. Expanded journal version of paper from 10th International Meshing Roundtable. This version removes some unwanted paragraph breaks from the previous version; the text is unchange

    3D boundary recovery by constrained Delaunay tetrahedralization

    Get PDF
    Three-dimensional boundary recovery is a fundamental problem in mesh generation. In this paper, we propose a practical algorithm for solving this problem. Our algorithm is based on the construction of a {\it constrained Delaunay tetrahedralization} (CDT) for a set of constraints (segments and facets). The algorithm adds additional points (so-called Steiner points) on segments only. The Steiner points are chosen in such a way that the resulting subsegments are Delaunay and their lengths are not unnecessarily short. It is theoretically guaranteed that the facets can be recovered without using Steiner points. The complexity of this algorithm is analyzed. The proposed algorithm has been implemented. Its performance is reported through various application examples

    Adaptive Mesh Refinement for Electromagnetic Simulation

    Full text link
    We consider problems related to initial meshing and adaptive mesh refinement for the electromagnetic simulation of various structures. The quality of the initial mesh and the performance of the adaptive refinement are of great importance for the finite element solution of the Maxwell equations, since they directly affect the accuracy and the computational time. In this paper, we describe the complete meshing workflow, which allows the simulation of arbitrary structures. Test simulations confirm that the presented approach allows to reach the quality of the industrial simulation software

    The existence of triangulations of non-convex polyhedra without new vertices

    Get PDF
    It is well known that a simple three-dimensional non-convex polyhedron may not be triangulated without using new vertices (so-called {\it Steiner points}). In this paper, we prove a condition that guarantees the existence of a triangulation of a non-convex polyhedron (of any dimension) without Steiner points. We briefly discuss algorithms for efficiently triangulating three-dimensional polyhedra

    On indecomposable polyhedra and the number of interior Steiner points

    Get PDF
    The existence of 3d {\it indecomposable polyhedra}, that is, the interior of every such polyhedron cannot be decomposed into a set of tetrahedra whose vertices are all of the given polyhedron, is well-known. While the geometry and combinatorial structure of such polyhedra are much less studied. In this article, we first investigate the geometry of some well-known examples, the so-called {\it Sch\"on\-hardt polyhedron}~\cite{Schonhardt1928} and the Bagemihl's generalization of it~\cite{Bagemihl48-decomp-polyhedra}, which will be called {\it Bagemihl polyhedra}. We provide a construction of an interior point, so-called {\it Steiner point}, which can be used to tetrahedralize the Sch\"on\-hardt and the Bagemihl polyhedra. We then provide a construction of a larger class of three-dimensional indecomposable polyhedra which often appear in grid generation problems. We show that such polyhedra have the same combinatorial structure as the Sch\"onhardt and Bagemihl polyhedra, but they may need more than one interior Steiner point to be tetrahedralized. Given such a polyhedron with n≄6n \ge 6 vertices, we show that it can be tetrahedralized by adding at most ⌈n−52⌉\left\lceil \frac{n - 5}{2}\right\rceil interior Steiner points. %, is sufficient to decompose it. We also show that this number is optimal in the worst case
    • 

    corecore