1,273 research outputs found

    Triangle-free intersection graphs of line segments with large chromatic number

    Full text link
    In the 1970s, Erdos asked whether the chromatic number of intersection graphs of line segments in the plane is bounded by a function of their clique number. We show the answer is no. Specifically, for each positive integer kk, we construct a triangle-free family of line segments in the plane with chromatic number greater than kk. Our construction disproves a conjecture of Scott that graphs excluding induced subdivisions of any fixed graph have chromatic number bounded by a function of their clique number.Comment: Small corrections, bibliography updat

    Coloring triangle-free rectangle overlap graphs with O(loglogn)O(\log\log n) colors

    Get PDF
    Recently, it was proved that triangle-free intersection graphs of nn line segments in the plane can have chromatic number as large as Θ(loglogn)\Theta(\log\log n). Essentially the same construction produces Θ(loglogn)\Theta(\log\log n)-chromatic triangle-free intersection graphs of a variety of other geometric shapes---those belonging to any class of compact arc-connected sets in R2\mathbb{R}^2 closed under horizontal scaling, vertical scaling, and translation, except for axis-parallel rectangles. We show that this construction is asymptotically optimal for intersection graphs of boundaries of axis-parallel rectangles, which can be alternatively described as overlap graphs of axis-parallel rectangles. That is, we prove that triangle-free rectangle overlap graphs have chromatic number O(loglogn)O(\log\log n), improving on the previous bound of O(logn)O(\log n). To this end, we exploit a relationship between off-line coloring of rectangle overlap graphs and on-line coloring of interval overlap graphs. Our coloring method decomposes the graph into a bounded number of subgraphs with a tree-like structure that "encodes" strategies of the adversary in the on-line coloring problem. Then, these subgraphs are colored with O(loglogn)O(\log\log n) colors using a combination of techniques from on-line algorithms (first-fit) and data structure design (heavy-light decomposition).Comment: Minor revisio

    Outerstring graphs are χ\chi-bounded

    Full text link
    An outerstring graph is an intersection graph of curves that lie in a common half-plane and have one endpoint on the boundary of that half-plane. We prove that the class of outerstring graphs is χ\chi-bounded, which means that their chromatic number is bounded by a function of their clique number. This generalizes a series of previous results on χ\chi-boundedness of outerstring graphs with various additional restrictions on the shape of curves or the number of times the pairs of curves can cross. The assumption that each curve has an endpoint on the boundary of the half-plane is justified by the known fact that triangle-free intersection graphs of straight-line segments can have arbitrarily large chromatic number.Comment: Introduction extended by a survey of results on (outer)string graphs, some minor correction

    Triangle-free geometric intersection graphs with large chromatic number

    Get PDF
    Several classical constructions illustrate the fact that the chromatic number of a graph can be arbitrarily large compared to its clique number. However, until very recently, no such construction was known for intersection graphs of geometric objects in the plane. We provide a general construction that for any arc-connected compact set XX in R2\mathbb{R}^2 that is not an axis-aligned rectangle and for any positive integer kk produces a family F\mathcal{F} of sets, each obtained by an independent horizontal and vertical scaling and translation of XX, such that no three sets in F\mathcal{F} pairwise intersect and χ(F)>k\chi(\mathcal{F})>k. This provides a negative answer to a question of Gyarfas and Lehel for L-shapes. With extra conditions, we also show how to construct a triangle-free family of homothetic (uniformly scaled) copies of a set with arbitrarily large chromatic number. This applies to many common shapes, like circles, square boundaries, and equilateral L-shapes. Additionally, we reveal a surprising connection between coloring geometric objects in the plane and on-line coloring of intervals on the line.Comment: Small corrections, bibliography updat

    Triangle-free geometric intersection graphs with no large independent sets

    Get PDF
    It is proved that there are triangle-free intersection graphs of line segments in the plane with arbitrarily small ratio between the maximum size of an independent set and the total number of vertices.Comment: Change of the title, minor revisio

    Restricted frame graphs and a conjecture of Scott

    Full text link
    Scott proved in 1997 that for any tree TT, every graph with bounded clique number which does not contain any subdivision of TT as an induced subgraph has bounded chromatic number. Scott also conjectured that the same should hold if TT is replaced by any graph HH. Pawlik et al. recently constructed a family of triangle-free intersection graphs of segments in the plane with unbounded chromatic number (thereby disproving an old conjecture of Erd\H{o}s). This shows that Scott's conjecture is false whenever HH is obtained from a non-planar graph by subdividing every edge at least once. It remains interesting to decide which graphs HH satisfy Scott's conjecture and which do not. In this paper, we study the construction of Pawlik et al. in more details to extract more counterexamples to Scott's conjecture. For example, we show that Scott's conjecture is false for any graph obtained from K4K_4 by subdividing every edge at least once. We also prove that if GG is a 2-connected multigraph with no vertex contained in every cycle of GG, then any graph obtained from GG by subdividing every edge at least twice is a counterexample to Scott's conjecture.Comment: 21 pages, 8 figures - Revised version (note that we moved some of our results to an appendix

    Note on the number of edges in families with linear union-complexity

    Full text link
    We give a simple argument showing that the number of edges in the intersection graph GG of a family of nn sets in the plane with a linear union-complexity is O(ω(G)n)O(\omega(G)n). In particular, we prove χ(G)col(G)<19ω(G)\chi(G)\leq \text{col}(G)< 19\omega(G) for intersection graph GG of a family of pseudo-discs, which improves a previous bound.Comment: background and related work is now more complete; presentation improve

    Burling graphs, chromatic number, and orthogonal tree-decompositions

    Get PDF
    A classic result of Asplund and Gr\"unbaum states that intersection graphs of axis-aligned rectangles in the plane are χ\chi-bounded. This theorem can be equivalently stated in terms of path-decompositions as follows: There exists a function f:NNf:\mathbb{N}\to\mathbb{N} such that every graph that has two path-decompositions such that each bag of the first decomposition intersects each bag of the second in at most kk vertices has chromatic number at most f(k)f(k). Recently, Dujmovi\'c, Joret, Morin, Norin, and Wood asked whether this remains true more generally for two tree-decompositions. In this note we provide a negative answer: There are graphs with arbitrarily large chromatic number for which one can find two tree-decompositions such that each bag of the first decomposition intersects each bag of the second in at most two vertices. Furthermore, this remains true even if one of the two decompositions is restricted to be a path-decomposition. This is shown using a construction of triangle-free graphs with unbounded chromatic number due to Burling, which we believe should be more widely known.Comment: v3: minor changes made following comments by the referees, v2: minor edit

    Coloring curves that cross a fixed curve

    Get PDF
    We prove that for every integer t1t\geq 1, the class of intersection graphs of curves in the plane each of which crosses a fixed curve in at least one and at most tt points is χ\chi-bounded. This is essentially the strongest χ\chi-boundedness result one can get for this kind of graph classes. As a corollary, we prove that for any fixed integers k2k\geq 2 and t1t\geq 1, every kk-quasi-planar topological graph on nn vertices with any two edges crossing at most tt times has O(nlogn)O(n\log n) edges.Comment: Small corrections, improved presentatio
    corecore