4,520 research outputs found

    Partitions of graphs into cographs

    Get PDF
    AbstractCographs form the minimal family of graphs containing K1 that is closed with respect to complementation and disjoint union. We discuss vertex partitions of graphs into the smallest number of cographs. We introduce a new parameter, calling the minimum order of such a partition the c-chromatic number of the graph. We begin by axiomatizing several well-known graphical parameters as motivation for this function. We present several bounds on c-chromatic number in terms of well-known expressions. We show that if a graph is triangle-free, then its chromatic number is bounded between the c-chromatic number and twice this number. We show that both bounds are sharp for graphs with arbitrarily high girth. This provides an alternative proof to a result by Broere and Mynhardt; namely, there exist triangle-free graphs with arbitrarily large c-chromatic numbers. We show that any planar graph with girth at least 11 has a c-chromatic number at most two. We close with several remarks on computational complexity. In particular, we show that computing the c-chromatic number is NP-complete for planar graphs

    Bipartite induced density in triangle-free graphs

    Full text link
    We prove that any triangle-free graph on nn vertices with minimum degree at least dd contains a bipartite induced subgraph of minimum degree at least d2/(2n)d^2/(2n). This is sharp up to a logarithmic factor in nn. Relatedly, we show that the fractional chromatic number of any such triangle-free graph is at most the minimum of n/dn/d and (2+o(1))n/logn(2+o(1))\sqrt{n/\log n} as nn\to\infty. This is sharp up to constant factors. Similarly, we show that the list chromatic number of any such triangle-free graph is at most O(min{n,(nlogn)/d})O(\min\{\sqrt{n},(n\log n)/d\}) as nn\to\infty. Relatedly, we also make two conjectures. First, any triangle-free graph on nn vertices has fractional chromatic number at most (2+o(1))n/logn(\sqrt{2}+o(1))\sqrt{n/\log n} as nn\to\infty. Second, any triangle-free graph on nn vertices has list chromatic number at most O(n/logn)O(\sqrt{n/\log n}) as nn\to\infty.Comment: 20 pages; in v2 added note of concurrent work and one reference; in v3 added more notes of ensuing work and a result towards one of the conjectures (for list colouring

    Some results on chromatic number as a function of triangle count

    Full text link
    A variety of powerful extremal results have been shown for the chromatic number of triangle-free graphs. Three noteworthy bounds are in terms of the number of vertices, edges, and maximum degree given by Poljak \& Tuza (1994), and Johansson. There have been comparatively fewer works extending these types of bounds to graphs with a small number of triangles. One noteworthy exception is a result of Alon et. al (1999) bounding the chromatic number for graphs with low degree and few triangles per vertex; this bound is nearly the same as for triangle-free graphs. This type of parametrization is much less rigid, and has appeared in dozens of combinatorial constructions. In this paper, we show a similar type of result for χ(G)\chi(G) as a function of the number of vertices nn, the number of edges mm, as well as the triangle count (both local and global measures). Our results smoothly interpolate between the generic bounds true for all graphs and bounds for triangle-free graphs. Our results are tight for most of these cases; we show how an open problem regarding fractional chromatic number and degeneracy in triangle-free graphs can resolve the small remaining gap in our bounds
    corecore