38 research outputs found

    Independent domination in hereditary classes

    Get PDF
    AbstractWe investigate Independent Domination Problem within hereditary classes of graphs. Boliac and Lozin [Independent domination in finitely defined classes of graphs, Theoret. Comput. Sci. 301 (1–3) (2003) 271–284] proved some sufficient conditions for Independent Domination Problem to be NP-complete within finitely defined hereditary classes of graphs. They posed a question whether the conditions are also necessary. We show that the conditions are not necessary, since Independent Domination Problem is NP-hard within 2P3-free graphs.Moreover, we show that the problem remains NP-hard for a new hereditary class of graphs, called hereditary 3-satgraphs. We characterize hereditary 3-satgraphs in terms of forbidden induced subgraph. As corollaries, we prove that Independent Domination Problem is NP-hard within the class of all 2P3-free perfect graphs and for K1,5-free weakly chordal graphs.Finally, we compare complexity of Independent Domination Problem with that of Independent Set Problem for a hierarchy of hereditary classes recently proposed by Hammer and Zverovich [Construction of maximal stable sets with k-extensions, Combin. Probab. Comput. 13 (2004) 1–8]. For each class in the hierarchy, a maximum independent set can be found in polynomial time, and the hierarchy covers all graphs. However, our characterization of hereditary 3-satgraphs implies that Independent Domination Problem is NP-hard for almost all classes in the hierarchy. This fact supports a conjecture that Independent Domination is harder than Independent Set Problem within hereditary classes

    List coloring in the absence of a linear forest.

    Get PDF
    The k-Coloring problem is to decide whether a graph can be colored with at most k colors such that no two adjacent vertices receive the same color. The Listk-Coloring problem requires in addition that every vertex u must receive a color from some given set L(u)⊆{1,…,k}. Let Pn denote the path on n vertices, and G+H and rH the disjoint union of two graphs G and H and r copies of H, respectively. For any two fixed integers k and r, we show that Listk-Coloring can be solved in polynomial time for graphs with no induced rP1+P5, hereby extending the result of Hoàng, Kamiński, Lozin, Sawada and Shu for graphs with no induced P5. Our result is tight; we prove that for any graph H that is a supergraph of P1+P5 with at least 5 edges, already List 5-Coloring is NP-complete for graphs with no induced H

    Odd Wheels Are Not Odd-Distance Graphs

    Get PDF
    An odd wheel graph is a graph formed by connecting a new vertex to all vertices of an odd cycle. We answer a question of Rosenfeld and Le by showing that odd wheels cannot be drawn in the plane so that the lengths of the edges are odd integers
    corecore