30,815 research outputs found

    Random triangle removal

    Full text link
    Starting from a complete graph on nn vertices, repeatedly delete the edges of a uniformly chosen triangle. This stochastic process terminates once it arrives at a triangle-free graph, and the fundamental question is to estimate the final number of edges (equivalently, the time it takes the process to finish, or how many edge-disjoint triangles are packed via the random greedy algorithm). Bollob\'as and Erd\H{o}s (1990) conjectured that the expected final number of edges has order n3/2n^{3/2}, motivated by the study of the Ramsey number R(3,t)R(3,t). An upper bound of o(n2)o(n^2) was shown by Spencer (1995) and independently by R\"odl and Thoma (1996). Several bounds were given for variants and generalizations (e.g., Alon, Kim and Spencer (1997) and Wormald (1999)), while the best known upper bound for the original question of Bollob\'as and Erd\H{o}s was n7/4+o(1)n^{7/4+o(1)} due to Grable (1997). No nontrivial lower bound was available. Here we prove that with high probability the final number of edges in random triangle removal is equal to n3/2+o(1)n^{3/2+o(1)}, thus confirming the 3/2 exponent conjectured by Bollob\'as and Erd\H{o}s and matching the predictions of Spencer et al. For the upper bound, for any fixed ϵ>0\epsilon>0 we construct a family of exp(O(1/ϵ))\exp(O(1/\epsilon)) graphs by gluing O(1/ϵ)O(1/\epsilon) triangles sequentially in a prescribed manner, and dynamically track all homomorphisms from them, rooted at any two vertices, up to the point where n3/2+ϵn^{3/2+\epsilon} edges remain. A system of martingales establishes concentration for these random variables around their analogous means in a random graph with corresponding edge density, and a key role is played by the self-correcting nature of the process. The lower bound builds on the estimates at that very point to show that the process will typically terminate with at least n3/2o(1)n^{3/2-o(1)} edges left.Comment: 42 pages, 4 figures. Supercedes arXiv:1108.178

    Optimal subgraph structures in scale-free configuration models

    Full text link
    Subgraphs reveal information about the geometry and functionalities of complex networks. For scale-free networks with unbounded degree fluctuations, we obtain the asymptotics of the number of times a small connected graph occurs as a subgraph or as an induced subgraph. We obtain these results by analyzing the configuration model with degree exponent τ(2,3)\tau\in(2,3) and introducing a novel class of optimization problems. For any given subgraph, the unique optimizer describes the degrees of the vertices that together span the subgraph. We find that subgraphs typically occur between vertices with specific degree ranges. In this way, we can count and characterize {\it all} subgraphs. We refrain from double counting in the case of multi-edges, essentially counting the subgraphs in the {\it erased} configuration model.Comment: 50 pages, 2 figure

    Minimum Degrees of Minimal Ramsey Graphs for Almost-Cliques

    Full text link
    For graphs FF and HH, we say FF is Ramsey for HH if every 22-coloring of the edges of FF contains a monochromatic copy of HH. The graph FF is Ramsey HH-minimal if FF is Ramsey for HH and there is no proper subgraph FF' of FF so that FF' is Ramsey for HH. Burr, Erdos, and Lovasz defined s(H)s(H) to be the minimum degree of FF over all Ramsey HH-minimal graphs FF. Define Ht,dH_{t,d} to be a graph on t+1t+1 vertices consisting of a complete graph on tt vertices and one additional vertex of degree dd. We show that s(Ht,d)=d2s(H_{t,d})=d^2 for all values 1<dt1<d\le t; it was previously known that s(Ht,1)=t1s(H_{t,1})=t-1, so it is surprising that s(Ht,2)=4s(H_{t,2})=4 is much smaller. We also make some further progress on some sparser graphs. Fox and Lin observed that s(H)2δ(H)1s(H)\ge 2\delta(H)-1 for all graphs HH, where δ(H)\delta(H) is the minimum degree of HH; Szabo, Zumstein, and Zurcher investigated which graphs have this property and conjectured that all bipartite graphs HH without isolated vertices satisfy s(H)=2δ(H)1s(H)=2\delta(H)-1. Fox, Grinshpun, Liebenau, Person, and Szabo further conjectured that all triangle-free graphs without isolated vertices satisfy this property. We show that dd-regular 33-connected triangle-free graphs HH, with one extra technical constraint, satisfy s(H)=2δ(H)1s(H) = 2\delta(H)-1; the extra constraint is that HH has a vertex vv so that if one removes vv and its neighborhood from HH, the remainder is connected.Comment: 10 pages; 3 figure
    corecore