25,503 research outputs found

    A reverse Sidorenko inequality

    Full text link
    Let HH be a graph allowing loops as well as vertex and edge weights. We prove that, for every triangle-free graph GG without isolated vertices, the weighted number of graph homomorphisms hom⁑(G,H)\hom(G, H) satisfies the inequality hom⁑(G,H)β‰€βˆuv∈E(G)hom⁑(Kdu,dv,H)1/(dudv), \hom(G, H ) \le \prod_{uv \in E(G)} \hom(K_{d_u,d_v}, H )^{1/(d_ud_v)}, where dud_u denotes the degree of vertex uu in GG. In particular, one has hom⁑(G,H)1/∣E(G)βˆ£β‰€hom⁑(Kd,d,H)1/d2 \hom(G, H )^{1/|E(G)|} \le \hom(K_{d,d}, H )^{1/d^2} for every dd-regular triangle-free GG. The triangle-free hypothesis on GG is best possible. More generally, we prove a graphical Brascamp-Lieb type inequality, where every edge of GG is assigned some two-variable function. These inequalities imply tight upper bounds on the partition function of various statistical models such as the Ising and Potts models, which includes independent sets and graph colorings. For graph colorings, corresponding to H=KqH = K_q, we show that the triangle-free hypothesis on GG may be dropped; this is also valid if some of the vertices of KqK_q are looped. A corollary is that among dd-regular graphs, G=Kd,dG = K_{d,d} maximizes the quantity cq(G)1/∣V(G)∣c_q(G)^{1/|V(G)|} for every qq and dd, where cq(G)c_q(G) counts proper qq-colorings of GG. Finally, we show that if the edge-weight matrix of HH is positive semidefinite, then hom⁑(G,H)β‰€βˆv∈V(G)hom⁑(Kdv+1,H)1/(dv+1). \hom(G, H) \le \prod_{v \in V(G)} \hom(K_{d_v+1}, H )^{1/(d_v+1)}. This implies that among dd-regular graphs, G=Kd+1G = K_{d+1} maximizes hom⁑(G,H)1/∣V(G)∣\hom(G, H)^{1/|V(G)|}. For 2-spin Ising models, our results give a complete characterization of extremal graphs: complete bipartite graphs maximize the partition function of 2-spin antiferromagnetic models and cliques maximize the partition function of ferromagnetic models. These results settle a number of conjectures by Galvin-Tetali, Galvin, and Cohen-Csikv\'ari-Perkins-Tetali, and provide an alternate proof to a conjecture by Kahn.Comment: 30 page

    On two problems in Ramsey-Tur\'an theory

    Full text link
    Alon, Balogh, Keevash and Sudakov proved that the (kβˆ’1)(k-1)-partite Tur\'an graph maximizes the number of distinct rr-edge-colorings with no monochromatic KkK_k for all fixed kk and r=2,3r=2,3, among all nn-vertex graphs. In this paper, we determine this function asymptotically for r=2r=2 among nn-vertex graphs with sub-linear independence number. Somewhat surprisingly, unlike Alon-Balogh-Keevash-Sudakov's result, the extremal construction from Ramsey-Tur\'an theory, as a natural candidate, does not maximize the number of distinct edge-colorings with no monochromatic cliques among all graphs with sub-linear independence number, even in the 2-colored case. In the second problem, we determine the maximum number of triangles asymptotically in an nn-vertex KkK_k-free graph GG with Ξ±(G)=o(n)\alpha(G)=o(n). The extremal graphs have similar structure to the extremal graphs for the classical Ramsey-Tur\'an problem, i.e.~when the number of edges is maximized.Comment: 22 page

    Fast Routing Table Construction Using Small Messages

    Full text link
    We describe a distributed randomized algorithm computing approximate distances and routes that approximate shortest paths. Let n denote the number of nodes in the graph, and let HD denote the hop diameter of the graph, i.e., the diameter of the graph when all edges are considered to have unit weight. Given 0 < eps <= 1/2, our algorithm runs in weak-O(n^(1/2 + eps) + HD) communication rounds using messages of O(log n) bits and guarantees a stretch of O(eps^(-1) log eps^(-1)) with high probability. This is the first distributed algorithm approximating weighted shortest paths that uses small messages and runs in weak-o(n) time (in graphs where HD in weak-o(n)). The time complexity nearly matches the lower bounds of weak-Omega(sqrt(n) + HD) in the small-messages model that hold for stateless routing (where routing decisions do not depend on the traversed path) as well as approximation of the weigthed diameter. Our scheme replaces the original identifiers of the nodes by labels of size O(log eps^(-1) log n). We show that no algorithm that keeps the original identifiers and runs for weak-o(n) rounds can achieve a polylogarithmic approximation ratio. Variations of our techniques yield a number of fast distributed approximation algorithms solving related problems using small messages. Specifically, we present algorithms that run in weak-O(n^(1/2 + eps) + HD) rounds for a given 0 < eps <= 1/2, and solve, with high probability, the following problems: - O(eps^(-1))-approximation for the Generalized Steiner Forest (the running time in this case has an additive weak-O(t^(1 + 2eps)) term, where t is the number of terminals); - O(eps^(-2))-approximation of weighted distances, using node labels of size O(eps^(-1) log n) and weak-O(n^(eps)) bits of memory per node; - O(eps^(-1))-approximation of the weighted diameter; - O(eps^(-3))-approximate shortest paths using the labels 1,...,n.Comment: 40 pages, 2 figures, extended abstract submitted to STOC'1

    Extremal results in sparse pseudorandom graphs

    Get PDF
    Szemer\'edi's regularity lemma is a fundamental tool in extremal combinatorics. However, the original version is only helpful in studying dense graphs. In the 1990s, Kohayakawa and R\"odl proved an analogue of Szemer\'edi's regularity lemma for sparse graphs as part of a general program toward extending extremal results to sparse graphs. Many of the key applications of Szemer\'edi's regularity lemma use an associated counting lemma. In order to prove extensions of these results which also apply to sparse graphs, it remained a well-known open problem to prove a counting lemma in sparse graphs. The main advance of this paper lies in a new counting lemma, proved following the functional approach of Gowers, which complements the sparse regularity lemma of Kohayakawa and R\"odl, allowing us to count small graphs in regular subgraphs of a sufficiently pseudorandom graph. We use this to prove sparse extensions of several well-known combinatorial theorems, including the removal lemmas for graphs and groups, the Erd\H{o}s-Stone-Simonovits theorem and Ramsey's theorem. These results extend and improve upon a substantial body of previous work.Comment: 70 pages, accepted for publication in Adv. Mat

    Convergent Sequences of Dense Graphs I: Subgraph Frequencies, Metric Properties and Testing

    Get PDF
    We consider sequences of graphs and define various notions of convergence related to these sequences: ``left convergence'' defined in terms of the densities of homomorphisms from small graphs into the graphs of the sequence, and ``right convergence'' defined in terms of the densities of homomorphisms from the graphs of the sequence into small graphs; and convergence in a suitably defined metric. In Part I of this series, we show that left convergence is equivalent to convergence in metric, both for simple graphs, and for graphs with nodeweights and edgeweights. One of the main steps here is the introduction of a cut-distance comparing graphs, not necessarily of the same size. We also show how these notions of convergence provide natural formulations of Szemeredi partitions, sampling and testing of large graphs.Comment: 57 pages. See also http://research.microsoft.com/~borgs/. This version differs from an earlier version from May 2006 in the organization of the sections, but is otherwise almost identica

    Two conjectures in Ramsey-Tur\'an theory

    Get PDF
    Given graphs H1,…,HkH_1,\ldots, H_k, a graph GG is (H1,…,Hk)(H_1,\ldots, H_k)-free if there is a kk-edge-colouring Ο•:E(G)β†’[k]\phi:E(G)\rightarrow [k] with no monochromatic copy of HiH_i with edges of colour ii for each i∈[k]i\in[k]. Fix a function f(n)f(n), the Ramsey-Tur\'an function RT(n,H1,…,Hk,f(n))\textrm{RT}(n,H_1,\ldots,H_k,f(n)) is the maximum number of edges in an nn-vertex (H1,…,Hk)(H_1,\ldots,H_k)-free graph with independence number at most f(n)f(n). We determine RT(n,K3,Ks,Ξ΄n)\textrm{RT}(n,K_3,K_s,\delta n) for s∈{3,4,5}s\in\{3,4,5\} and sufficiently small Ξ΄\delta, confirming a conjecture of Erd\H{o}s and S\'os from 1979. It is known that RT(n,K8,f(n))\textrm{RT}(n,K_8,f(n)) has a phase transition at f(n)=Θ(nlog⁑n)f(n)=\Theta(\sqrt{n\log n}). However, the values of RT(n,K8,o(nlog⁑n))\textrm{RT}(n,K_8, o(\sqrt{n\log n})) was not known. We determined this value by proving RT(n,K8,o(nlog⁑n))=n24+o(n2)\textrm{RT}(n,K_8,o(\sqrt{n\log n}))=\frac{n^2}{4}+o(n^2), answering a question of Balogh, Hu and Simonovits. The proofs utilise, among others, dependent random choice and results from graph packings.Comment: 20 pages, 2 figures, 2 pages appendi
    • …
    corecore