263 research outputs found

    The Metric Nearness Problem

    Get PDF
    Metric nearness refers to the problem of optimally restoring metric properties to distance measurements that happen to be nonmetric due to measurement errors or otherwise. Metric data can be important in various settings, for example, in clustering, classification, metric-based indexing, query processing, and graph theoretic approximation algorithms. This paper formulates and solves the metric nearness problem: Given a set of pairwise dissimilarities, find a ā€œnearestā€ set of distances that satisfy the properties of a metricā€”principally the triangle inequality. For solving this problem, the paper develops efficient triangle fixing algorithms that are based on an iterative projection method. An intriguing aspect of the metric nearness problem is that a special case turns out to be equivalent to the all pairs shortest paths problem. The paper exploits this equivalence and develops a new algorithm for the latter problem using a primal-dual method. Applications to graph clustering are provided as an illustration. We include experiments that demonstrate the computational superiority of triangle fixing over general purpose convex programming software. Finally, we conclude by suggesting various useful extensions and generalizations to metric nearness

    An efficient algorithm for the ā„“p\ell_{p} norm based metric nearness problem

    Full text link
    Given a dissimilarity matrix, the metric nearness problem is to find the nearest matrix of distances that satisfy the triangle inequalities. This problem has wide applications, such as sensor networks, image processing, and so on. But it is of great challenge even to obtain a moderately accurate solution due to the O(n3)O(n^{3}) metric constraints and the nonsmooth objective function which is usually a weighted ā„“p\ell_{p} norm based distance. In this paper, we propose a delayed constraint generation method with each subproblem solved by the semismooth Newton based proximal augmented Lagrangian method (PALM) for the metric nearness problem. Due to the high memory requirement for the storage of the matrix related to the metric constraints, we take advantage of the special structure of the matrix and do not need to store the corresponding constraint matrix. A pleasing aspect of our algorithm is that we can solve these problems involving up to 10810^{8} variables and 101310^{13} constraints. Numerical experiments demonstrate the efficiency of our algorithm. In theory, firstly, under a mild condition, we establish a primal-dual error bound condition which is very essential for the analysis of local convergence rate of PALM. Secondly, we prove the equivalence between the dual nondegeneracy condition and nonsingularity of the generalized Jacobian for the inner subproblem of PALM. Thirdly, when q(ā‹…)=āˆ„ā‹…āˆ„1q(\cdot)=\|\cdot\|_{1} or āˆ„ā‹…āˆ„āˆž\|\cdot\|_{\infty}, without the strict complementarity condition, we also prove the equivalence between the the dual nondegeneracy condition and the uniqueness of the primal solution

    A dual basis approach to multidimensional scaling: spectral analysis and graph regularity

    Full text link
    Classical multidimensional scaling (CMDS) is a technique that aims to embed a set of objects in a Euclidean space given their pairwise Euclidean distance matrix. The main part of CMDS is based on double centering a squared distance matrix and employing a truncated eigendecomposition to recover the point coordinates. A central result in CMDS connects the squared Euclidean matrix to a Gram matrix derived from the set of points. In this paper, we study a dual basis approach to classical multidimensional scaling. We give an explicit formula for the dual basis and fully characterize the spectrum of an essential matrix in the dual basis framework. We make connections to a related problem in metric nearness.Comment: 9 page

    Learning User Preferences to Incentivize Exploration in the Sharing Economy

    Full text link
    We study platforms in the sharing economy and discuss the need for incentivizing users to explore options that otherwise would not be chosen. For instance, rental platforms such as Airbnb typically rely on customer reviews to provide users with relevant information about different options. Yet, often a large fraction of options does not have any reviews available. Such options are frequently neglected as viable choices, and in turn are unlikely to be evaluated, creating a vicious cycle. Platforms can engage users to deviate from their preferred choice by offering monetary incentives for choosing a different option instead. To efficiently learn the optimal incentives to offer, we consider structural information in user preferences and introduce a novel algorithm - Coordinated Online Learning (CoOL) - for learning with structural information modeled as convex constraints. We provide formal guarantees on the performance of our algorithm and test the viability of our approach in a user study with data of apartments on Airbnb. Our findings suggest that our approach is well-suited to learn appropriate incentives and increase exploration on the investigated platform.Comment: Longer version of AAAI'18 paper. arXiv admin note: text overlap with arXiv:1702.0284
    • ā€¦
    corecore