502 research outputs found

    Post-training load-related changes of auditory working memory: An EEG study

    Get PDF
    Working memory (WM) refers to the temporary retention and manipulation of information, and its capacity is highly susceptible to training. Yet, the neural mechanisms that allow for increased performance under demanding conditions are not fully understood. We expected that post-training efficiency in WM performance modulates neural processing during high load tasks. We tested this hypothesis, using electroencephalography (EEG) (N = 39), by comparing source space spectral power of healthy adults performing low and high load auditory WM tasks. Prior to the assessment, participants either underwent a modality-specific auditory WM training, or a modality-irrelevant tactile WM training, or were not trained (active control). After a modality-specific training participants showed higher behavioral performance, compared to the control. EEG data analysis revealed general effects of WM load, across all training groups, in the theta-, alpha-, and beta-frequency bands. With increased load theta-band power increased over frontal, and decreased over parietal areas. Centro-parietal alpha-band power and central beta-band power decreased with load. Interestingly, in the high load condition a tendency toward reduced beta-band power in the right medial temporal lobe was observed in the modality-specific WM training group compared to the modality-irrelevant and active control groups. Our finding that WM processing during the high load condition changed after modality-specific WM training, showing reduced beta-band activity in voice-selective regions, possibly indicates a more efficient maintenance of task-relevant stimuli. The general load effects suggest that WM performance at high load demands involves complementary mechanisms, combining a strengthening of task-relevant and a suppression of task-irrelevant processing

    Shaping Functional Architecture by Oscillatory Alpha Activity: Gating by Inhibition

    Get PDF
    In order to understand the working brain as a network, it is essential to identify the mechanisms by which information is gated between regions. We here propose that information is gated by inhibiting task-irrelevant regions, thus routing information to task-relevant regions. The functional inhibition is reflected in oscillatory activity in the alpha band (8–13 Hz). From a physiological perspective the alpha activity provides pulsed inhibition reducing the processing capabilities of a given area. Active processing in the engaged areas is reflected by neuronal synchronization in the gamma band (30–100 Hz) accompanied by an alpha band decrease. According to this framework the brain could be studied as a network by investigating cross-frequency interactions between gamma and alpha activity. Specifically the framework predicts that optimal task performance will correlate with alpha activity in task-irrelevant areas. In this review we will discuss the empirical support for this framework. Given that alpha activity is by far the strongest signal recorded by EEG and MEG, we propose that a major part of the electrophysiological activity detected from the working brain reflects gating by inhibition

    Time course of information processing in visual and haptic object classification

    Get PDF
    Vision identifies objects rapidly and efficiently. In contrast, object recognition by touch is much slower. Furthermore, haptics usually serially accumulates information from different parts of objects, whereas vision typically processes object information in parallel. Is haptic object identification slower simply due to sequential information acquisition and the resulting memory load or due to more fundamental processing differences between the senses? To compare the time course of visual and haptic object recognition, we slowed visual processing using a novel, restricted viewing technique. In an electroencephalographic (EEG) experiment, participants discriminated familiar, nameable from unfamiliar, unnamable objects both visually and haptically. Analyses focused on the evoked and total fronto-central theta-band (5–7 Hz; a marker of working memory) and the occipital upper alpha-band (10–12 Hz; a marker of perceptual processing) locked to the onset of classification. Decreases in total upper alpha-band activity for haptic identification of objects indicate a likely processing role of multisensory extrastriate areas. Long-latency modulations of alpha-band activity differentiated between familiar and unfamiliar objects in haptics but not in vision. In contrast, theta-band activity showed a general increase over time for the slowed-down visual recognition task only. We conclude that haptic object recognition relies on common representations with vision but also that there are fundamental differences between the senses that do not merely arise from differences in their speed of processing

    Working Memory Load-related Theta Power Decreases in Dorsolateral Prefrontal Cortex Predict Individual Differences in Performance

    Get PDF
    Holding information in working memory (WM) is an active and effortful process that is accompanied by sustained load-dependent changes in oscillatory brain activity. These proportional power increases are often reported in EEG studies recording theta over frontal midline sites. Intracranial recordings, however, yield mixed results, depending on the brain area being recorded from. We recorded intracranial EEG with depth electrodes in 13 patients with epilepsy that were performing a Sternberg WM task. Here, we investigated patterns of theta power changes as a function of memory load during maintenance in three areas critical for WM: dorsolateral prefrontal cortex (DLPFC), dorsal ACC (dACC), and hippocampus. Theta frequency power in both hippocampus and dACC increased during maintenance. In contrast, theta frequency power in the DLPFC decreased during maintenance, and this decrease was proportional to memory load. Only the power decreases in DLPFC, but not the power increases in hippocampus and dACC, were predictive of behavior in a given trial. The extent of the load-related theta power decreases in the DLPFC in a given participant predicted a participant's RTs, revealing that DLPFC theta explains individual differences in WM ability between participants. Together, these data reveal a pattern of theta power decreases in the DLPFC that is predictive of behavior and that is opposite of that in other brain areas. This result suggests that theta band power changes serve different cognitive functions in different brain areas and specifically that theta power decreases in DLPFC have an important role in maintenance of information

    From rest to task

    Get PDF
    A primary goal of neuroscience research on psychiatric disorders such as schizophrenia is to enhance the current understanding of underlying biological mechanisms in order to develop novel interventions. Human brain functions are maintained through activity of large-scale brain networks. Accordingly, deficient perceptual and cognitive processing can be caused by failures of functional integration within networks, as reflected by the disconnection hypothesis of schizophrenia. Various neuroimaging techniques can be applied to study functional brain networks, each having different strengths. Frequently used complementary methods are the electroencephalography (EEG) and functional magnetic resonance imaging (fMRI), which were shown to have a common basis. Given the feasibility of combined EEG and fMRI measurement, EEG signatures of functional networks have been described, providing complimentary information about the functional state of networks. Both at rest and during task completion, many independent EEG and fMRI studies confirmed deficient network connectivity in schizophrenia. However, a rather diffuse picture with hyper- and hypo- activations within and between specific networks was reported. Furthermore, the theory of state dependent information processing argues that spontaneous and prestimulus brain activity interacts with upcoming task-related processes. Consequently, observed network deficits that vary according to task conditions could be caused by differences in resting or prestimulus state in schizophrenia. Based on that background, the present thesis aimed to increase the understanding of aberrant functional networks in schizophrenia by using simultaneous EEG-fMRI under different conditions. One study investigated integrative mechanisms of networks during eyes-open (EO) resting state using a common-phase synchronization measure in an EEG-informed fMRI analysis (study 3). The other two studies (studies 1&2) used an fMRI-informed EEG analysis: The second study was an extension of the first, which was performed in healthy subjects only. Hence, the same methodologies and analyses were applied in both studies, but in the second study schizophrenia patients were compared to healthy controls. The associations between four temporally coherent networks (TCNs) – the default mode network (DMN), the dorsal attention network (dAN), left and right working memory networks (WMNs) – and power of three EEG frequency bands (theta, alpha, and beta band) during a verbal working memory (WM) task were investigated. Both resting state and task-related studies performed in schizophrenia patients (studies 2&3) revealed altered activation strength, functional states and interaction of TCNs, especially of the DMN. During rest (study 3), the DMN was differently integrated through common-phase synchronization in the delta (0.5 – 3.5Hz) and beta (13 – 30Hz) band. At prestimulus states of a verbal WM task, however, study 2 did not reveal differences in the activation level of the DMN between groups. Furthermore, from pre-to-post stimulus, the association of the DMN with frontal-midline (FM) theta (3 – 7Hz) band was altered, and a reduced suppression of the DMN during WM retention was detected. Schizophrenia patients also demonstrated abnormal interactions between networks: the DMN and dAN showed a reduced anti-correlation and the WMNs demonstrated an absent lateralization effect (study 2). The view that schizophrenia patients display TCN deficiencies is supported by the results of the present thesis. Especially the DMN and its interaction to the task-positive dAN showed specific alterations at different mental states and their interaction (during rest and from pre-to-post stimulus). Those alterations might at least partly explain observed symptomatology as attentional orientation deficits in patients. To conclude, functional networks as the DMN might represent promising targets for novel treatment options such as neurofeedback or transcranial direct current stimulation (tDCS)

    Dissociating Alzheimer’s Disease from Amnestic Mild Cognitive Impairment using Time-Frequency Based EEG Neurometrics

    Get PDF
    This work explores the utility of using magnitude (ERSP), phase angle (ITPC), and cross-frequency coupling (PAC) indices derived from electroencephalogram (EEG) recording using spectral decomposition as unique biomarkers of Alzheimer’s Disease (AD) and amnestic mild cognitive impairment (aMCI), respectively. The experimental protocol was a visual oddball discrimination task conducted during a brief (approximately 20 minute) recording session. Participants were 60 older adults from an outpatient memory clinic diagnosed with either aMCI (n=29; M=73.0; SD=9.32) or AD (n=31; M=78.29; SD=8.28) according to NIA-AA criteria. Results indicate that ITPC values differ significantly between AD and MCI groups. Findings contribute to a growing body of literature seeking to document illness-related abnormalities in time-frequency EEG signatures that may serve as reliable indicators of the pathophysiological processes underlying the cognitive deficits observed in AD and aMCI-afflicted populations

    Working Memory Load-related Theta Power Decreases in Dorsolateral Prefrontal Cortex Predict Individual Differences in Performance

    Get PDF
    Holding information in working memory (WM) is an active and effortful process that is accompanied by sustained load-dependent changes in oscillatory brain activity. These proportional power increases are often reported in EEG studies recording theta over frontal midline sites. Intracranial recordings, however, yield mixed results, depending on the brain area being recorded from. We recorded intracranial EEG with depth electrodes in 13 patients with epilepsy that were performing a Sternberg WM task. Here, we investigated patterns of theta power changes as a function of memory load during maintenance in three areas critical for WM: dorsolateral prefrontal cortex (DLPFC), dorsal ACC (dACC), and hippocampus. Theta frequency power in both hippocampus and dACC increased during maintenance. In contrast, theta frequency power in the DLPFC decreased during maintenance, and this decrease was proportional to memory load. Only the power decreases in DLPFC, but not the power increases in hippocampus and dACC, were predictive of behavior in a given trial. The extent of the load-related theta power decreases in the DLPFC in a given participant predicted a participant's RTs, revealing that DLPFC theta explains individual differences in WM ability between participants. Together, these data reveal a pattern of theta power decreases in the DLPFC that is predictive of behavior and that is opposite of that in other brain areas. This result suggests that theta band power changes serve different cognitive functions in different brain areas and specifically that theta power decreases in DLPFC have an important role in maintenance of information

    Task-related modulation of anterior theta and posterior alpha EEG reflects top-down preparation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Prestimulus EEG alpha activity in humans has been considered to reflect ongoing top-down preparation for the performance of subsequent tasks. Since theta oscillations may be related to poststimulus top-down processing, we investigated whether prestimulus EEG theta activity also reflects top-down cognitive preparation for a stimulus.</p> <p>Results</p> <p>We recorded EEG data from 15 healthy controls performing a color and shape discrimination task, and used the wavelet transformation to investigate the time course and power of oscillatory activity in the signals. We observed a relationship between both anterior theta and posterior alpha power in the prestimulus period and the type of subsequent task.</p> <p>Conclusions</p> <p>Since task-differences were reflected in both theta and alpha activities prior to stimulus onset, both prestimulus theta (particularly around the anterior region) and prestimulus alpha (particularly around the posterior region) activities may reflect prestimulus top-down preparation for the performance of subsequent tasks.</p
    corecore