132 research outputs found

    UWB Compact Monopole Antenna for LTE, UMTS and WIMAX applications

    Get PDF
    In this paper, a monopole Antenna is studied for the 1710-1880MHz LTE (Long Term Evolution) Band, for the 1900-2170MHz UMTS (Universal Mobile Telecommunications System) band, and for the 2.3GHz WIMAX (Worldwide Interoperability for Microwave Access) band. For its large size, this antenna is designed to be installed in outdoor and indoor antennas

    Antennas and Propagation Aspects for Emerging Wireless Communication Technologies

    Get PDF
    The increasing demand for high data rate applications and the delivery of zero-latency multimedia content drives technological evolutions towards the design and implementation of next-generation broadband wireless networks. In this context, various novel technologies have been introduced, such as millimeter wave (mmWave) transmission, massive multiple input multiple output (MIMO) systems, and non-orthogonal multiple access (NOMA) schemes in order to support the vision of fifth generation (5G) wireless cellular networks. The introduction of these technologies, however, is inextricably connected with a holistic redesign of the current transceiver structures, as well as the network architecture reconfiguration. To this end, ultra-dense network deployment along with distributed massive MIMO technologies and intermediate relay nodes have been proposed, among others, in order to ensure an improved quality of services to all mobile users. In the same framework, the design and evaluation of novel antenna configurations able to support wideband applications is of utmost importance for 5G context support. Furthermore, in order to design reliable 5G systems, the channel characterization in these frequencies and in the complex propagation environments cannot be ignored because it plays a significant role. In this Special Issue, fourteen papers are published, covering various aspects of novel antenna designs for broadband applications, propagation models at mmWave bands, the deployment of NOMA techniques, radio network planning for 5G networks, and multi-beam antenna technologies for 5G wireless communications

    Passive Planar Microwave Devices

    Get PDF
    The aim of this book is to highlight some recent advances in microwave planar devices. The development of planar technologies still generates great interest because of their many applications in fields as diverse as wireless communications, medical instrumentation, remote sensing, etc. In this book, particular interest has been focused on an electronically controllable phase shifter, wireless sensing, a multiband textile antenna, a MIMO antenna in microstrip technology, a miniaturized spoof plasmonic antipodal Vivaldi antenna, a dual-band balanced bandpass filter, glide-symmetric structures, a transparent multiband antenna for vehicle communications, a multilayer bandpass filter with high selectivity, microwave planar cutoff probes, and a wideband transition from microstrip to ridge empty substrate integrated waveguide

    Autonomous smart antenna systems for future mobile devices

    Get PDF
    Along with the current trend of wireless technology innovation, wideband, compact size, low-profile, lightweight and multiple functional antenna and array designs are becoming more attractive in many applications. Conventional wireless systems utilise omni-directional or sectored antenna systems. The disadvantage of such antenna systems is that the electromagnetic energy, required by a particular user located in a certain direction, is radiated unnecessarily in every direction within the entire cell, hence causing interference to other users in the system. In order to limit this source of interference and direct the energy to the desired user, smart antenna systems have been investigated and developed. This thesis presents the design, simulation, fabrication and full implementation of a novel smart antenna system for future mobile applications. The design and characterisation of a novel antenna structure and four-element liner array geometry for smart antenna systems are proposed in the first stage of this study. Firstly, a miniaturised microstrip-fed planar monopole antenna with Archimedean spiral slots to cover WiFi/Bluetooth and LTE mobile applications has been demonstrated. The fundamental structure of the proposed antenna element is a circular patch, which operates in high frequency range, for the purpose of miniaturising the circuit dimension. In order to achieve a multi-band performance, Archimedean spiral slots, acting as resonance paths, have been etched on the circular patch antenna. Different shapes of Archimedean spiral slots have been investigated and compared. The miniaturised and optimised antenna achieves a bandwidth of 2.2GHz to 2.9GHz covering WiFi/Bluetooth (2.45GHz) and LTE (2.6GHz) mobile standards. Then a four-element linear antenna array geometry utilising the planar monopole elements with Archimedean spiral slots has been described. All the relevant parameters have been studied and evaluated. Different phase shifts are excited for the array elements, and the main beam scanning range has been simulated and analysed. The second stage of the study presents several feeding network structures, which control the amplitude and phase excitations of the smart antenna elements. Research begins with the basic Wilkinson power divider configuration. Then this thesis presents a compact feeding network for circular antenna array, reconfigurable feeding networks for tuning the operating frequency and polarisations, a feeding network on high resistivity silicon (HRS), and an ultrawide-band (UWB) feeding network covering from 0.5GHz to 10GHz. The UWB feeding network is used to establish the smart antenna array system. Different topologies of phase shifters are discussed in the third stage, including ferrite phase shifters and planar phase shifters using switched delay line and loaded transmission line technologies. Diodes, FETs, MMIC and MEMS are integrated into different configurations. Based on the comparison, a low loss and high accurate Hittite MMIC analogue phase shifter has been selected and fully evaluated for this implementation. For the purpose of impedance matching and field matching, compact and ultra wideband CPW-to-Microstrip transitions are utilised between the phase shifters, feeding network and antenna elements. Finally, the fully integrated smart antenna array achieves a 10dB reflection coefficient from 2.25GHz to 2.8GHz, which covers WiFi/Bluetooth (2.45GHz) and LTE (2.6GHz) mobile applications. By appropriately controlling the voltage on the phase shifters, the main beam of the antenna array is steered ±50° and ±52°, for 2.45GHz and 2.6GHz, respectively. Furthermore, the smart antenna array demonstrates a gain of 8.5dBi with 40° 3dB bandwidth in broadside direction, and has more than 10dB side lobe level suppression across the scan. The final stage of the study investigates hardware and software automatic control systems for the smart antenna array. Two microcontrollers PIC18F4550 and LPC1768 are utilised to build the control PCBs. Using the graphical user interfaces provided in this thesis, it is able to configure the beam steering of the smart antenna array, which allows the user to analyse and optimise the signal strength of the received WiFi signals around the mobile device. The design strategies proposed in this thesis contribute to the realisation of adaptable and autonomous smart phone systems

    Microwave Antennas for Energy Harvesting Applications

    Get PDF
    In the last few years, the demand for power has increased; therefore, the need for alternate energy sources has become essential. Sources of fossil fuels are finite, are costly, and causes environmental hazard. Sustainable, environmentally benign energy can be derived from nuclear fission or captured from ambient sources. Large-scale ambient energy is widely available and large-scale technologies are being developed to efficiently capture it. At the other end of the scale, there are small amounts of wasted energy that could be useful if captured. There are various types of external energy sources such as solar, thermal, wind, and RF energy. Energy has been harvested for different purposes in the last few recent years. Energy harvesting from inexhaustible sources with no adverse environmental effect can provide unlimited energy for harvesting in a way of powering an embedded system from the environment. It could be RF energy harvesting by using antennas that can be held on the car glass or building, or in any places. The abundant RF energy is harvested from surrounding sources. This chapter focuses on RF energy harvesting in which the abundant RF energy from surrounding sources, such as nearby mobile phones, wireless LANs (WLANs), Wi-Fi, FM/AM radio signals, and broadcast television signals or DTV, is captured by a receiving antenna and rectified into a usable DC voltage. A practical approach for RF energy harvesting design and management of the harvested and available energy for wireless sensor networks is to improve the energy efficiency and large accepted antenna gain. The emerging self-powered systems challenge and dictate the direction of research in energy harvesting (EH). There are a lot of applications of energy harvesting such as wireless weather stations, car tire pressure monitors, implantable medical devices, traffic alert signs, and mars rover. A lot of researches are done to create several designs of rectenna (antenna and rectifier) that meet various objectives for use in RF energy harvesting, whatever opaque or transparent. However, most of the designed antennas are opaque and prevent the sunlight to pass through, so it is hard to put it on the car glass or window. Thus, there should be a design for transparent antenna that allows the sunlight to pass through. Among various antennas, microstrip patch antennas are widely used because they are low profile, are lightweight, and have planar structure. Microstrip patch-structured rectennas are evaluated and compared with an emphasis on the various methods adopted to obtain a rectenna with harmonic rejection functionality, frequency, and polarization selectivity. Multiple frequency bands are tapped for energy harvesting, and this aspect of the implementation is one of the main focus points. The bands targeted for harvesting in this chapter will be those that are the most readily available to the general population. These include Wi-Fi hotspots, as well as cellular (900/850 MHz band), personal communications services (1800/1900 MHz band), and sources of 2.4 GHz and WiMAX (2.3/3.5 GHz) network transmitters. On the other hand, at high frequency, advances in nanotechnology have led to the development of semiconductor-based solar cells, nanoscale antennas for power harvesting applications, and integration of antennas into solar cells to design low-cost light-weight systems. The role of nanoantenna system is transforming thermal energy provided by the sun to electricity. Nanoantennas target the mid-infrared wavelengths where conventional photo voltaic cells are inefficient. However, the concept of using optical rectenna for harvesting solar energy was first introduced four decades ago. Recently, it has invited a surge of interest, with different laboratories around the world working on various aspects of the technology. The result is a technology that can be efficient and inexpensive, requiring only low-cost materials. Unlike conventional solar cells that harvest energy in visible light frequency range. Since the UV frequency range is much greater than visible light, we consider the quantum mechanical behavior of a driven particle in nanoscale antennas for power harvesting applications

    Antenna Designs for 5G/IoT and Space Applications

    Get PDF
    This book is intended to shed some light on recent advances in antenna design for these new emerging applications and identify further research areas in this exciting field of communications technologies. Considering the specificity of the operational environment, e.g., huge distance, moving support (satellite), huge temperature drift, small dimension with respect to the distance, etc, antennas, are the fundamental device allowing to maintain a constant interoperability between ground station and satellite, or different satellites. High gain, stable (in temperature, and time) performances, long lifecycle are some of the requirements that necessitates special attention with respect to standard designs. The chapters of this book discuss various aspects of the above-mentioned list presenting the view of the authors. Some of the contributors are working strictly in the field (space), so they have a very targeted view on the subjects, while others with a more academic background, proposes futuristic solutions. We hope that interested reader, will find a fertile source of information, that combined with their interest/background will allow efficiently exploiting the combination of these two perspectives

    Design, Modelling, and Characterisation of Millimetre-Wave Antennas for 5G Wireless Applications

    Get PDF
    PhDFuture 5G systems and beyond are expected to implement compact and versatile antennas in highly densifi ed millimetre-wave (MMW) wireless networks. This research emphasises on the realisation of 5G antennas provided with wide bandwidth, high gain, adaptable performance, preferably conformal implementation, and feasible bulk fabrication. Ka{band (26.5{40 GHz) is selected based on recent 5G standardisation, and novel antenna geometries are developed in this work on both rigid and flexible substrates by implementing advanced techniques of frequency reconfi guration, multiple-input-multiple- output (MIMO) assembly, as well as wideband and multiband antennas and arrays. Nove lMMW wideband antennas are presented for 5G and spatial diversity at the antenna front-ends is substantially improved by deploying wideband antennas in a MIMO topology for simultaneous multiple-channel communication. However, wideband operation is often associated with efficiency degradation, which demands a more versatile approach that allows the adaptable antenna to select the operating frequency. In this research, high performance recon figurable antennas are designed for frequency selection over Ka- {band. Also, an efficient and conformal antenna front-end solution is developed, which integrates both frequency recon guration and MIMO technology. Gain of the antenna is critically important for 5G systems to mitigate high propagation losses. Antenna design with both high gain and bandwidth is challenging as wideband antennas are traditionally gain-limited, while antenna arrays deliver high gain over a narrow bandwidth. An Enhanced Franklin array model is proposed in this thesis, which aggregates multiband response with high gain performance. Furthermore, novel flexible monopole antenna and array con gurations are realised to attain high gain profi le over the complete Ka{band. These proposed 5G antennas are anticipated as potential contribution in the progress towards the realisation of future wireless networks.EECS Fees Waiver Award and National University of Sciences and Technolog

    Antennas and Propagation

    Get PDF
    This Special Issue gathers topics of utmost interest in the field of antennas and propagation, such as: new directions and challenges in antenna design and propagation; innovative antenna technologies for space applications; metamaterial, metasurface and other periodic structures; antennas for 5G; electromagnetic field measurements and remote sensing applications

    Advanced Carbon Fiber Composite Materials for Shielding and Antenna Applications

    Get PDF
    Due to the low weight, ease of fabrication, low cost, high stiffness, high thermal and electrical conductivity, advanced carbon fiber composite (CFC) material is one of the most desirable materials which have been considered recently in the aerospace, electronic, and infrastructure industry. This thesis examines the use of CFC materials for electromagnetic field shielding and antenna applications. Using a suitable electromagnetic model of composite materials, we evaluate the shielding effectiveness (SE) and other EM properties of composites paying attention to antenna design. Analytical and simulation results are compared with experimental data. Two kinds of composite materials are investigated, namely reinforced continuous carbon-fiber (RCCF) composites and carbon nanotube (CNT) composites. For analytical SE analysis of multilayer RCCF composites, the material shows anisotropic behavior along the direction of the fibers, and we employ the transmission matrix method in conjunction with the anisotropic properties of each layer. The shielding performance of composites is also experimentally investigated. In order to enhance the conductivity of an RCCF composite, a small volume fraction of multi-walled carbon nanotubes (MWCNTs) is added to the RCCF material. We investigate the SE of the proposed MWCNT “nanocomposite” over a wide frequency band up to 26.5 GHz. The effect of aspect ratio on shielding performance is addressed as well. The effective conductivity of the nanocomposites was determined over the frequency range of interest. The use of RCCF and single-walled carbon nanotube (SWCNT) composite is investigated for building antennas, by replacing the metal with CFC. We use an RCCF composite to build resonant and wideband antennas. The effect of the conductivity tensor of RCCF composite on the antenna performance is addressed. We also study the performance of a microstrip patch antenna with the ground plane made of RCCF composite. As one of the most highly-conductive composite materials, single wall carbon nanotube (SWCNT) buckypapers are used to build composite antennas. A new fabrication method is proposed to print arbitrarily-shaped full-composite SWCNT antenna on any type of substrate. Various types of SWCNT antennas are fabricated for different antenna applications, namely UHF-RFID, WLAN, UWB, and mm-wave applications. Good agreement is observed between simulation and experimental results for all the aforementioned composite antennas. Using the spectral domain method, the Green’s function is obtained for an infinitesimal HED on a dielectric slab over a CFC ground plane. Due to the high conductivity, CFCs are modeled using a surface impedance. The expressions for the electric field components are derived. The numerical integration details particularly dealing with low-converged tail of the integrand for fields at the air-dielectric interface are addressed. Numerical results based on this method compare well with results based on a time-domain finite integration technique. The effect of conductivity and anisotropy of the composite ground plane on electric field is investigated

    1-D broadside-radiating leaky-wave antenna based on a numerically synthesized impedance surface

    Get PDF
    A newly-developed deterministic numerical technique for the automated design of metasurface antennas is applied here for the first time to the design of a 1-D printed Leaky-Wave Antenna (LWA) for broadside radiation. The surface impedance synthesis process does not require any a priori knowledge on the impedance pattern, and starts from a mask constraint on the desired far-field and practical bounds on the unit cell impedance values. The designed reactance surface for broadside radiation exhibits a non conventional patterning; this highlights the merit of using an automated design process for a design well known to be challenging for analytical methods. The antenna is physically implemented with an array of metal strips with varying gap widths and simulation results show very good agreement with the predicted performance
    • 

    corecore