10 research outputs found

    Sensor Signal and Information Processing II

    Get PDF
    In the current age of information explosion, newly invented technological sensors and software are now tightly integrated with our everyday lives. Many sensor processing algorithms have incorporated some forms of computational intelligence as part of their core framework in problem solving. These algorithms have the capacity to generalize and discover knowledge for themselves and learn new information whenever unseen data are captured. The primary aim of sensor processing is to develop techniques to interpret, understand, and act on information contained in the data. The interest of this book is in developing intelligent signal processing in order to pave the way for smart sensors. This involves mathematical advancement of nonlinear signal processing theory and its applications that extend far beyond traditional techniques. It bridges the boundary between theory and application, developing novel theoretically inspired methodologies targeting both longstanding and emergent signal processing applications. The topic ranges from phishing detection to integration of terrestrial laser scanning, and from fault diagnosis to bio-inspiring filtering. The book will appeal to established practitioners, along with researchers and students in the emerging field of smart sensors processing

    Fundamentals

    Get PDF
    Volume 1 establishes the foundations of this new field. It goes through all the steps from data collection, their summary and clustering, to different aspects of resource-aware learning, i.e., hardware, memory, energy, and communication awareness. Machine learning methods are inspected with respect to resource requirements and how to enhance scalability on diverse computing architectures ranging from embedded systems to large computing clusters

    Fundamentals

    Get PDF
    Volume 1 establishes the foundations of this new field. It goes through all the steps from data collection, their summary and clustering, to different aspects of resource-aware learning, i.e., hardware, memory, energy, and communication awareness. Machine learning methods are inspected with respect to resource requirements and how to enhance scalability on diverse computing architectures ranging from embedded systems to large computing clusters

    Pertanika Journal of Science & Technology

    Get PDF

    Pertanika Journal of Science & Technology

    Get PDF

    Democratizing machine learning

    Get PDF
    Modelle des maschinellen Lernens sind zunehmend in der Gesellschaft verankert, oft in Form von automatisierten Entscheidungsprozessen. Ein wesentlicher Grund dafür ist die verbesserte Zugänglichkeit von Daten, aber auch von Toolkits für maschinelles Lernen, die den Zugang zu Methoden des maschinellen Lernens für Nicht-Experten ermöglichen. Diese Arbeit umfasst mehrere Beiträge zur Demokratisierung des Zugangs zum maschinellem Lernen, mit dem Ziel, einem breiterem Publikum Zugang zu diesen Technologien zu er- möglichen. Die Beiträge in diesem Manuskript stammen aus mehreren Bereichen innerhalb dieses weiten Gebiets. Ein großer Teil ist dem Bereich des automatisierten maschinellen Lernens (AutoML) und der Hyperparameter-Optimierung gewidmet, mit dem Ziel, die oft mühsame Aufgabe, ein optimales Vorhersagemodell für einen gegebenen Datensatz zu finden, zu vereinfachen. Dieser Prozess besteht meist darin ein für vom Benutzer vorgegebene Leistungsmetrik(en) optimales Modell zu finden. Oft kann dieser Prozess durch Lernen aus vorhergehenden Experimenten verbessert oder beschleunigt werden. In dieser Arbeit werden drei solcher Methoden vorgestellt, die entweder darauf abzielen, eine feste Menge möglicher Hyperparameterkonfigurationen zu erhalten, die wahrscheinlich gute Lösungen für jeden neuen Datensatz enthalten, oder Eigenschaften der Datensätze zu nutzen, um neue Konfigurationen vorzuschlagen. Darüber hinaus wird eine Sammlung solcher erforderlichen Metadaten zu den Experimenten vorgestellt, und es wird gezeigt, wie solche Metadaten für die Entwicklung und als Testumgebung für neue Hyperparameter- Optimierungsmethoden verwendet werden können. Die weite Verbreitung von ML-Modellen in vielen Bereichen der Gesellschaft erfordert gleichzeitig eine genauere Untersuchung der Art und Weise, wie aus Modellen abgeleitete automatisierte Entscheidungen die Gesellschaft formen, und ob sie möglicherweise Individuen oder einzelne Bevölkerungsgruppen benachteiligen. In dieser Arbeit wird daher ein AutoML-Tool vorgestellt, das es ermöglicht, solche Überlegungen in die Suche nach einem optimalen Modell miteinzubeziehen. Diese Forderung nach Fairness wirft gleichzeitig die Frage auf, ob die Fairness eines Modells zuverlässig geschätzt werden kann, was in einem weiteren Beitrag in dieser Arbeit untersucht wird. Da der Zugang zu Methoden des maschinellen Lernens auch stark vom Zugang zu Software und Toolboxen abhängt, sind mehrere Beiträge in Form von Software Teil dieser Arbeit. Das R-Paket mlr3pipelines ermöglicht die Einbettung von Modellen in sogenan- nte Machine Learning Pipelines, die Vor- und Nachverarbeitungsschritte enthalten, die im maschinellen Lernen und AutoML häufig benötigt werden. Das mlr3fairness R-Paket hingegen ermöglicht es dem Benutzer, Modelle auf potentielle Benachteiligung hin zu über- prüfen und diese durch verschiedene Techniken zu reduzieren. Eine dieser Techniken, multi-calibration wurde darüberhinaus als seperate Software veröffentlicht.Machine learning artifacts are increasingly embedded in society, often in the form of automated decision-making processes. One major reason for this, along with methodological improvements, is the increasing accessibility of data but also machine learning toolkits that enable access to machine learning methodology for non-experts. The core focus of this thesis is exactly this – democratizing access to machine learning in order to enable a wider audience to benefit from its potential. Contributions in this manuscript stem from several different areas within this broader area. A major section is dedicated to the field of automated machine learning (AutoML) with the goal to abstract away the tedious task of obtaining an optimal predictive model for a given dataset. This process mostly consists of finding said optimal model, often through hyperparameter optimization, while the user in turn only selects the appropriate performance metric(s) and validates the resulting models. This process can be improved or sped up by learning from previous experiments. Three such methods one with the goal to obtain a fixed set of possible hyperparameter configurations that likely contain good solutions for any new dataset and two using dataset characteristics to propose new configurations are presented in this thesis. It furthermore presents a collection of required experiment metadata and how such meta-data can be used for the development and as a test bed for new hyperparameter optimization methods. The pervasion of models derived from ML in many aspects of society simultaneously calls for increased scrutiny with respect to how such models shape society and the eventual biases they exhibit. Therefore, this thesis presents an AutoML tool that allows incorporating fairness considerations into the search for an optimal model. This requirement for fairness simultaneously poses the question of whether we can reliably estimate a model’s fairness, which is studied in a further contribution in this thesis. Since access to machine learning methods also heavily depends on access to software and toolboxes, several contributions in the form of software are part of this thesis. The mlr3pipelines R package allows for embedding models in so-called machine learning pipelines that include pre- and postprocessing steps often required in machine learning and AutoML. The mlr3fairness R package on the other hand enables users to audit models for potential biases as well as reduce those biases through different debiasing techniques. One such technique, multi-calibration is published as a separate software package, mcboost

    Shortest Route at Dynamic Location with Node Combination-Dijkstra Algorithm

    Get PDF
    Abstract— Online transportation has become a basic requirement of the general public in support of all activities to go to work, school or vacation to the sights. Public transportation services compete to provide the best service so that consumers feel comfortable using the services offered, so that all activities are noticed, one of them is the search for the shortest route in picking the buyer or delivering to the destination. Node Combination method can minimize memory usage and this methode is more optimal when compared to A* and Ant Colony in the shortest route search like Dijkstra algorithm, but can’t store the history node that has been passed. Therefore, using node combination algorithm is very good in searching the shortest distance is not the shortest route. This paper is structured to modify the node combination algorithm to solve the problem of finding the shortest route at the dynamic location obtained from the transport fleet by displaying the nodes that have the shortest distance and will be implemented in the geographic information system in the form of map to facilitate the use of the system. Keywords— Shortest Path, Algorithm Dijkstra, Node Combination, Dynamic Location (key words

    Fuelling the zero-emissions road freight of the future: routing of mobile fuellers

    Get PDF
    The future of zero-emissions road freight is closely tied to the sufficient availability of new and clean fuel options such as electricity and Hydrogen. In goods distribution using Electric Commercial Vehicles (ECVs) and Hydrogen Fuel Cell Vehicles (HFCVs) a major challenge in the transition period would pertain to their limited autonomy and scarce and unevenly distributed refuelling stations. One viable solution to facilitate and speed up the adoption of ECVs/HFCVs by logistics, however, is to get the fuel to the point where it is needed (instead of diverting the route of delivery vehicles to refuelling stations) using "Mobile Fuellers (MFs)". These are mobile battery swapping/recharging vans or mobile Hydrogen fuellers that can travel to a running ECV/HFCV to provide the fuel they require to complete their delivery routes at a rendezvous time and space. In this presentation, new vehicle routing models will be presented for a third party company that provides MF services. In the proposed problem variant, the MF provider company receives routing plans of multiple customer companies and has to design routes for a fleet of capacitated MFs that have to synchronise their routes with the running vehicles to deliver the required amount of fuel on-the-fly. This presentation will discuss and compare several mathematical models based on different business models and collaborative logistics scenarios

    Creating 3D city models from satellite imagery for integrated assessment and forecasting of solar energy

    Get PDF
    Buildings are the most prominent component in the urban environment. The geometric identification of urban buildings plays an important role in a range of urban applications, including 3D representations of buildings, energy consumption analysis, sustainable development, urban planning, risk assessment, and change detection. In particular, 3D building models can provide a comprehensive assessment of surfaces exposed to solar radiation. However, the identification of the available surfaces on urban structures and the actual locations which receive a sufficient amount of sunlight to increase installed power capacity (e.g. Photovoltaic systems) are crucial considerations for solar energy supply efficiency. Although considerable research has been devoted to detecting the rooftops of buildings, less attention has been paid to creating and completing 3D models of urban buildings. Therefore, there is a need to increase our understanding of the solar energy potential of the surfaces of building envelopes so we can formulate future adaptive energy policies for improving the sustainability of cities. The goal of this thesis was to develop a new approach to automatically model existing buildings for the exploitation of solar energy potential within an urban environment. By investigating building footprints and heights based on shadow information derived from satellite images, 3D city models were generated. Footprints were detected using a two level segmentation process: (1) the iterative graph cuts approach for determining building regions and (2) the active contour method and the adjusted-geometry parameters method for modifying the edges and shapes of the extracted building footprints. Building heights were estimated based on the simulation of artificial shadow regions using identified building footprints and solar information in the image metadata at pre-defined height increments. The difference between the actual and simulated shadow regions at every height increment was computed using the Jaccard similarity coefficient. The 3D models at the first level of detail were then obtained by extruding the building footprints based on their heights by creating image voxels and using the marching cube approach. In conclusion, 3D models of buildings can be generated solely from 2D data of the buildings’attributes in any selected urban area. The approach outperforms the past attempts, and mean error is reduced by at least 21%. Qualitative evaluations of the study illustrate that it is possible to achieve 3D building models based on satellite images with a mean error of less than 5 m. This comprehensive study allows for 3D city models to be generated in the absence of elevation attributes and additional data. Experiments revealed that this novel, automated method can be useful in a number of spatial analyses and urban sustainability applications

    Sensing the Cultural Significance with AI for Social Inclusion

    Get PDF
    Social Inclusion has been growing as a goal in heritage management. Whereas the 2011 UNESCO Recommendation on the Historic Urban Landscape (HUL) called for tools of knowledge documentation, social media already functions as a platform for online communities to actively involve themselves in heritage-related discussions. Such discussions happen both in “baseline scenarios” when people calmly share their experiences about the cities they live in or travel to, and in “activated scenarios” when radical events trigger their emotions. To organize, process, and analyse the massive unstructured multi-modal (mainly images and texts) user-generated data from social media efficiently and systematically, Artificial Intelligence (AI) is shown to be indispensable. This thesis explores the use of AI in a methodological framework to include the contribution of a larger and more diverse group of participants with user-generated data. It is an interdisciplinary study integrating methods and knowledge from heritage studies, computer science, social sciences, network science, and spatial analysis. AI models were applied, nurtured, and tested, helping to analyse the massive information content to derive the knowledge of cultural significance perceived by online communities. The framework was tested in case study cities including Venice, Paris, Suzhou, Amsterdam, and Rome for the baseline and/or activated scenarios. The AI-based methodological framework proposed in this thesis is shown to be able to collect information in cities and map the knowledge of the communities about cultural significance, fulfilling the expectation and requirement of HUL, useful and informative for future socially inclusive heritage management processes
    corecore