758 research outputs found

    Computational solutions for addressing heterogeneity in DNA methylation data

    Get PDF
    DNA methylation, a reversible epigenetic modification, has been implicated with various bi- ological processes including gene regulation. Due to the multitude of datasets available, it is a premier candidate for computational tool development, especially for investigating hetero- geneity within and across samples. We differentiate between three levels of heterogeneity in DNA methylation data: between-group, between-sample, and within-sample heterogeneity. Here, we separately address these three levels and present new computational approaches to quantify and systematically investigate heterogeneity. Epigenome-wide association studies relate a DNA methylation aberration to a phenotype and therefore address between-group heterogeneity. To facilitate such studies, which necessar- ily include data processing, exploratory data analysis, and differential analysis of DNA methy- lation, we extended the R-package RnBeads. We implemented novel methods for calculating the epigenetic age of individuals, novel imputation methods, and differential variability analysis. A use-case of the new features is presented using samples from Ewing sarcoma patients. As an important driver of epigenetic differences between phenotypes, we systematically investigated associations between donor genotypes and DNA methylation states in methylation quantitative trait loci (methQTL). To that end, we developed a novel computational framework –MAGAR– for determining statistically significant associations between genetic and epigenetic variations. We applied the new pipeline to samples obtained from sorted blood cells and complex bowel tissues of healthy individuals and found that tissue-specific and common methQTLs have dis- tinct genomic locations and biological properties. To investigate cell-type-specific DNA methylation profiles, which are the main drivers of within-group heterogeneity, computational deconvolution methods can be used to dissect DNA methylation patterns into latent methylation components. Deconvolution methods require pro- files of high technical quality and the identified components need to be biologically interpreted. We developed a computational pipeline to perform deconvolution of complex DNA methyla- tion data, which implements crucial data processing steps and facilitates result interpretation. We applied the protocol to lung adenocarcinoma samples and found indications of tumor in- filtration by immune cells and associations of the detected components with patient survival. Within-sample heterogeneity (WSH), i.e., heterogeneous DNA methylation patterns at a ge- nomic locus within a biological sample, is often neglected in epigenomic studies. We present the first systematic benchmark of scores quantifying WSH genome-wide using simulated and experimental data. Additionally, we created two novel scores that quantify DNA methyla- tion heterogeneity at single CpG resolution with improved robustness toward technical biases. WSH scores describe different types of WSH in simulated data, quantify differential hetero- geneity, and serve as a reliable estimator of tumor purity. Due to the broad availability of DNA methylation data, the levels of heterogeneity in DNA methylation data can be comprehensively investigated. We contribute novel computational frameworks for analyzing DNA methylation data with respect to different levels of hetero- geneity. We envision that this toolbox will be indispensible for understanding the functional implications of DNA methylation patterns in health and disease.DNA Methylierung ist eine reversible, epigenetische Modifikation, die mit verschiedenen biologischen Prozessen wie beispielsweise der Genregulation in Verbindung steht. Eine Vielzahl von DNA MethylierungsdatensĂ€tzen bildet die perfekte Grundlage zur Entwicklung von Softwareanwendungen, insbesondere um HeterogenitĂ€t innerhalb und zwischen Proben zu beschreiben. Wir unterscheiden drei Ebenen von HeterogenitĂ€t in DNA Methylierungsdaten: zwischen Gruppen, zwischen Proben und innerhalb einer Probe. Hier betrachten wir die drei Ebenen von HeterogenitĂ€t in DNA Methylierungsdaten unabhĂ€ngig voneinander und prĂ€sentieren neue AnsĂ€tze um die HeterogenitĂ€t zu beschreiben und zu quantifizieren. Epigenomweite Assoziationsstudien verknĂŒpfen eine DNA MethylierungsverĂ€nderung mit einem PhĂ€notypen und beschreiben HeterogenitĂ€t zwischen Gruppen. Um solche Studien, welche Datenprozessierung, sowie exploratorische und differentielle Datenanalyse beinhalten, zu vereinfachen haben wir die R-basierte Softwareanwendung RnBeads erweitert. Die Erweiterungen beinhalten neue Methoden, um das epigenetische Alter vorherzusagen, neue SchĂ€tzungsmethoden fĂŒr fehlende Datenpunkte und eine differentielle VariabilitĂ€tsanalyse. Die Analyse von Ewing-Sarkom Patientendaten wurde als Anwendungsbeispiel fĂŒr die neu entwickelten Methoden gewĂ€hlt. Wir untersuchten Assoziationen zwischen Genotypen und DNA Methylierung von einzelnen CpGs, um sogenannte methylation quantitative trait loci (methQTL) zu definieren. Diese stellen einen wichtiger Faktor dar, der epigenetische Unterschiede zwischen Gruppen induziert. Hierzu entwickelten wir ein neues Softwarepaket (MAGAR), um statistisch signifikante Assoziationen zwischen genetischer und epigenetischer Variation zu identifizieren. Wir wendeten diese Pipeline auf Blutzelltypen und komplexe Biopsien von gesunden Individuen an und konnten gemeinsame und gewebespezifische methQTLs in verschiedenen Bereichen des Genoms lokalisieren, die mit unterschiedlichen biologischen Eigenschaften verknĂŒpft sind. Die Hauptursache fĂŒr HeterogenitĂ€t innerhalb einer Gruppe sind zelltypspezifische DNA Methylierungsmuster. Um diese genauer zu untersuchen kann Dekonvolutionssoftware die DNA Methylierungsmatrix in unabhĂ€ngige Variationskomponenten zerlegen. Dekonvolutionsmethoden auf Basis von DNA Methylierung benötigen technisch hochwertige Profile und die identifizierten Komponenten mĂŒssen biologisch interpretiert werden. In dieser Arbeit entwickelten wir eine computerbasierte Pipeline zur DurchfĂŒhrung von Dekonvolutionsexperimenten, welche die Datenprozessierung und Interpretation der Resultate beinhaltet. Wir wendeten das entwickelte Protokoll auf Lungenadenokarzinome an und fanden Anzeichen fĂŒr eine Tumorinfiltration durch Immunzellen, sowie Verbindungen zum Überleben der Patienten. HeterogenitĂ€t innerhalb einer Probe (within-sample heterogeneity, WSH), d.h. heterogene Methylierungsmuster innerhalb einer Probe an einer genomischen Position, wird in epigenomischen Studien meist vernachlĂ€ssigt. Wir prĂ€sentieren den ersten Vergleich verschiedener, genomweiter WSH Maße auf simulierten und experimentellen Daten. ZusĂ€tzlich entwickelten wir zwei neue Maße um WSH fĂŒr einzelne CpGs zu berechnen, welche eine verbesserte Robustheit gegenĂŒber technischen Faktoren aufweisen. WSH Maße beschreiben verschiedene Arten von WSH, quantifizieren differentielle HeterogenitĂ€t und sagen Tumorreinheit vorher. Aufgrund der breiten VerfĂŒgbarkeit von DNA Methylierungsdaten können die Ebenen der HeterogenitĂ€t ganzheitlich beschrieben werden. In dieser Arbeit prĂ€sentieren wir neue Softwarelösungen zur Analyse von DNA Methylierungsdaten in Bezug auf die verschiedenen Ebenen der HeterogenitĂ€t. Wir sind davon ĂŒberzeugt, dass die vorgestellten Softwarewerkzeuge unverzichtbar fĂŒr das VerstĂ€ndnis von DNA Methylierung im kranken und gesunden Stadium sein werden

    Epigenetic Regulation of Cell Type–Specific Expression Patterns in the Human Mammary Epithelium

    Get PDF
    Differentiation is an epigenetic program that involves the gradual loss of pluripotency and acquisition of cell type–specific features. Understanding these processes requires genome-wide analysis of epigenetic and gene expression profiles, which have been challenging in primary tissue samples due to limited numbers of cells available. Here we describe the application of high-throughput sequencing technology for profiling histone and DNA methylation, as well as gene expression patterns of normal human mammary progenitor-enriched and luminal lineage-committed cells. We observed significant differences in histone H3 lysine 27 tri-methylation (H3K27me3) enrichment and DNA methylation of genes expressed in a cell type–specific manner, suggesting their regulation by epigenetic mechanisms and a dynamic interplay between the two processes that together define developmental potential. The technologies we developed and the epigenetically regulated genes we identified will accelerate the characterization of primary cell epigenomes and the dissection of human mammary epithelial lineage-commitment and luminal differentiation

    Integration of epigenetic regulatory mechanisms in heart failure

    Get PDF
    The number of “omics” approaches is continuously growing. Among others, epigenetics has appeared as an attractive area of investigation by the cardiovascular research community, notably considering its association with disease development. Complex diseases such as cardiovascular diseases have to be tackled using methods integrating different omics levels, so called “multi-omics” approaches. These approaches combine and co-analyze different levels of disease regulation. In this review, we present and discuss the role of epigenetic mechanisms in regulating gene expression and provide an integrated view of how these mechanisms are interlinked and regulate the development of cardiac disease, with a particular attention to heart failure. We focus on DNA, histone, and RNA modifications, and discuss the current methods and tools used for data integration and analysis. Enhancing the knowledge of these regulatory mechanisms may lead to novel therapeutic approaches and biomarkers for precision healthcare and improved clinical outcomes
    • 

    corecore