9 research outputs found

    Hydrological Extremes in a Warming Climate: Nonstationarity, Uncertainties and Impacts

    Get PDF
    This Special Issue comprises 11 papers that outline the advances in research on various aspects of climate change impacts on hydrologic extremes, including both drivers (temperature, precipitation, and snow) and effects (peak flow, low flow, and water temperature). These studies cover a broad range of topics on hydrological extremes, including hydro-climatic controls, trends, homogeneity, nonstationarity, compound events and associated uncertainties, for both historical and future climates

    Mining a Small Medical Data Set by Integrating the Decision Tree and t-test

    Get PDF
    [[abstract]]Although several researchers have used statistical methods to prove that aspiration followed by the injection of 95% ethanol left in situ (retention) is an effective treatment for ovarian endometriomas, very few discuss the different conditions that could generate different recovery rates for the patients. Therefore, this study adopts the statistical method and decision tree techniques together to analyze the postoperative status of ovarian endometriosis patients under different conditions. Since our collected data set is small, containing only 212 records, we use all of these data as the training data. Therefore, instead of using a resultant tree to generate rules directly, we use the value of each node as a cut point to generate all possible rules from the tree first. Then, using t-test, we verify the rules to discover some useful description rules after all possible rules from the tree have been generated. Experimental results show that our approach can find some new interesting knowledge about recurrent ovarian endometriomas under different conditions.[[journaltype]]國外[[incitationindex]]EI[[booktype]]紙本[[countrycodes]]FI

    Combining SOA and BPM Technologies for Cross-System Process Automation

    Get PDF
    This paper summarizes the results of an industry case study that introduced a cross-system business process automation solution based on a combination of SOA and BPM standard technologies (i.e., BPMN, BPEL, WSDL). Besides discussing major weaknesses of the existing, custom-built, solution and comparing them against experiences with the developed prototype, the paper presents a course of action for transforming the current solution into the proposed solution. This includes a general approach, consisting of four distinct steps, as well as specific action items that are to be performed for every step. The discussion also covers language and tool support and challenges arising from the transformation

    Proceedings of the ECMLPKDD 2015 Doctoral Consortium

    Get PDF
    ECMLPKDD 2015 Doctoral Consortium was organized for the second time as part of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECMLPKDD), organised in Porto during September 7-11, 2015. The objective of the doctoral consortium is to provide an environment for students to exchange their ideas and experiences with peers in an interactive atmosphere and to get constructive feedback from senior researchers in machine learning, data mining, and related areas. These proceedings collect together and document all the contributions of the ECMLPKDD 2015 Doctoral Consortium

    2009 Annual Progress Report: DOE Hydrogen Program

    Full text link
    This report summarizes the hydrogen and fuel cell R&D activities and accomplishments of the DOE Hydrogen Program for FY2009. It covers the program areas of hydrogen production and delivery; fuel cells; manufacturing; technology validation; safety, codes and standards; education; and systems analysis

    Task Allocation in Foraging Robot Swarms:The Role of Information Sharing

    Get PDF
    Autonomous task allocation is a desirable feature of robot swarms that collect and deliver items in scenarios where congestion, caused by accumulated items or robots, can temporarily interfere with swarm behaviour. In such settings, self-regulation of workforce can prevent unnecessary energy consumption. We explore two types of self-regulation: non-social, where robots become idle upon experiencing congestion, and social, where robots broadcast information about congestion to their team mates in order to socially inhibit foraging. We show that while both types of self-regulation can lead to improved energy efficiency and increase the amount of resource collected, the speed with which information about congestion flows through a swarm affects the scalability of these algorithms
    corecore