1,107 research outputs found

    Degree-3 Treewidth Sparsifiers

    Full text link
    We study treewidth sparsifiers. Informally, given a graph GG of treewidth kk, a treewidth sparsifier HH is a minor of GG, whose treewidth is close to kk, ∣V(H)∣|V(H)| is small, and the maximum vertex degree in HH is bounded. Treewidth sparsifiers of degree 33 are of particular interest, as routing on node-disjoint paths, and computing minors seems easier in sub-cubic graphs than in general graphs. In this paper we describe an algorithm that, given a graph GG of treewidth kk, computes a topological minor HH of GG such that (i) the treewidth of HH is Ω(k/polylog(k))\Omega(k/\text{polylog}(k)); (ii) ∣V(H)∣=O(k4)|V(H)| = O(k^4); and (iii) the maximum vertex degree in HH is 33. The running time of the algorithm is polynomial in ∣V(G)∣|V(G)| and kk. Our result is in contrast to the known fact that unless NP⊆coNP/polyNP \subseteq coNP/{\sf poly}, treewidth does not admit polynomial-size kernels. One of our key technical tools, which is of independent interest, is a construction of a small minor that preserves node-disjoint routability between two pairs of vertex subsets. This is closely related to the open question of computing small good-quality vertex-cut sparsifiers that are also minors of the original graph.Comment: Extended abstract to appear in Proceedings of ACM-SIAM SODA 201

    Routing Symmetric Demands in Directed Minor-Free Graphs with Constant Congestion

    Get PDF
    The problem of routing in graphs using node-disjoint paths has received a lot of attention and a polylogarithmic approximation algorithm with constant congestion is known for undirected graphs [Chuzhoy and Li 2016] and [Chekuri and Ene 2013]. However, the problem is hard to approximate within polynomial factors on directed graphs, for any constant congestion [Chuzhoy, Kim and Li 2016]. Recently, [Chekuri, Ene and Pilipczuk 2016] have obtained a polylogarithmic approximation with constant congestion on directed planar graphs, for the special case of symmetric demands. We extend their result by obtaining a polylogarithmic approximation with constant congestion on arbitrary directed minor-free graphs, for the case of symmetric demands
    • …
    corecore