29,248 research outputs found

    Non-Euclidean geometry in nature

    Full text link
    I describe the manifestation of the non-Euclidean geometry in the behavior of collective observables of some complex physical systems. Specifically, I consider the formation of equilibrium shapes of plants and statistics of sparse random graphs. For these systems I discuss the following interlinked questions: (i) the optimal embedding of plants leaves in the three-dimensional space, (ii) the spectral statistics of sparse random matrix ensembles.Comment: 52 pages, 21 figures, last section is rewritten, a reference to chaotic Hamiltonian systems is adde

    Percolation on a product of two trees

    Full text link
    We show that critical percolation on a product of two regular trees of degree ≥\ge 3 satisfies the triangle condition. The proof does not examine the degrees of vertices and is not "perturbative" in any sense. It relies on an unpublished lemma of Oded Schramm.Comment: Published in at http://dx.doi.org/10.1214/10-AOP618 the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Persistence of the Jordan center in Random Growing Trees

    Full text link
    The Jordan center of a graph is defined as a vertex whose maximum distance to other nodes in the graph is minimal, and it finds applications in facility location and source detection problems. We study properties of the Jordan Center in the case of random growing trees. In particular, we consider a regular tree graph on which an infection starts from a root node and then spreads along the edges of the graph according to various random spread models. For the Independent Cascade (IC) model and the discrete Susceptible Infected (SI) model, both of which are discrete time models, we show that as the infected subgraph grows with time, the Jordan center persists on a single vertex after a finite number of timesteps. Finally, we also study the continuous time version of the SI model and bound the maximum distance between the Jordan center and the root node at any time.Comment: 28 pages, 14 figure

    Query Learning with Exponential Query Costs

    Full text link
    In query learning, the goal is to identify an unknown object while minimizing the number of "yes" or "no" questions (queries) posed about that object. A well-studied algorithm for query learning is known as generalized binary search (GBS). We show that GBS is a greedy algorithm to optimize the expected number of queries needed to identify the unknown object. We also generalize GBS in two ways. First, we consider the case where the cost of querying grows exponentially in the number of queries and the goal is to minimize the expected exponential cost. Then, we consider the case where the objects are partitioned into groups, and the objective is to identify only the group to which the object belongs. We derive algorithms to address these issues in a common, information-theoretic framework. In particular, we present an exact formula for the objective function in each case involving Shannon or Renyi entropy, and develop a greedy algorithm for minimizing it. Our algorithms are demonstrated on two applications of query learning, active learning and emergency response.Comment: 15 page
    • …
    corecore