10,082 research outputs found

    Characterizations in Domination Theory

    Get PDF
    Let G = (V,E) be a graph. A set R is a restrained dominating set (total restrained dominating set, resp.) if every vertex in V − R (V) is adjacent to a vertex in R and (every vertex in V −R) to a vertex in V −R. The restrained domination number of G (total restrained domination number of G), denoted by gamma_r(G) (gamma_tr(G)), is the smallest cardinality of a restrained dominating set (total restrained dominating set) of G. If T is a tree of order n, then gamma_r(T) is greater than or equal to (n+2)/3. We show that gamma_tr(T) is greater than or equal to (n+2)/2. Moreover, we show that if n is congruent to 0 mod 4, then gamma_tr(T) is greater than or equal to (n+2)/2 + 1. We then constructively characterize the extremal trees achieving these lower bounds. Finally, if G is a graph of order n greater than or equal to 2, such that both G and G\u27 are not isomorphic to P_3, then gamma_r(G) + gamma_r(G\u27) is greater than or equal to 4 and less than or equal to n +2. We provide a similar result for total restrained domination and characterize the extremal graphs G of order n achieving these bounds

    Protecting a Graph with Mobile Guards

    Full text link
    Mobile guards on the vertices of a graph are used to defend it against attacks on either its vertices or its edges. Various models for this problem have been proposed. In this survey we describe a number of these models with particular attention to the case when the attack sequence is infinitely long and the guards must induce some particular configuration before each attack, such as a dominating set or a vertex cover. Results from the literature concerning the number of guards needed to successfully defend a graph in each of these problems are surveyed.Comment: 29 pages, two figures, surve

    On Roman, Global and Restrained Domination in Graphs

    Get PDF
    In this paper, we present new upper bounds for the global domination and Roman domination numbers and also prove that these results are asymptotically best possible. Moreover, we give upper bounds for the restrained domination and total restrained domination numbers for large classes of graphs, and show that, for almost all graphs, the restrained domination number is equal to the domination number, and the total restrained domination number is equal to the total domination number. A number of open problems are posed. © 2010 Springer
    • …
    corecore