130 research outputs found

    Trustworthiness in Social Big Data Incorporating Semantic Analysis, Machine Learning and Distributed Data Processing

    Get PDF
    This thesis presents several state-of-the-art approaches constructed for the purpose of (i) studying the trustworthiness of users in Online Social Network platforms, (ii) deriving concealed knowledge from their textual content, and (iii) classifying and predicting the domain knowledge of users and their content. The developed approaches are refined through proof-of-concept experiments, several benchmark comparisons, and appropriate and rigorous evaluation metrics to verify and validate their effectiveness and efficiency, and hence, those of the applied frameworks

    Security techniques for intelligent spam sensing and anomaly detection in online social platforms

    Get PDF
    Copyright © 2020 Institute of Advanced Engineering and Science. All rights reserved. The recent advances in communication and mobile technologies made it easier to access and share information for most people worldwide. Among the most powerful information spreading platforms are the Online Social Networks (OSN)s that allow Internet-connected users to share different information such as instant messages, tweets, photos, and videos. Adding to that many governmental and private institutions use the OSNs such as Twitter for official announcements. Consequently, there is a tremendous need to provide the required level of security for OSN users. However, there are many challenges due to the different protocols and variety of mobile apps used to access OSNs. Therefore, traditional security techniques fail to provide the needed security and privacy, and more intelligence is required. Computational intelligence adds high-speed computation, fault tolerance, adaptability, and error resilience when used to ensure security in OSN apps. This research provides a comprehensive related work survey and investigates the application of artificial neural networks for intrusion detection systems and spam filtering for OSNs. In addition, we use the concept of social graphs and weighted cliques in the detection of suspicious behavior of certain online groups and to prevent further planned actions such as cyber/terrorist attacks before they happen

    Security techniques for intelligent spam sensing and anomaly detection in online social platforms

    Get PDF
    Copyright © 2020 Institute of Advanced Engineering and Science. All rights reserved. The recent advances in communication and mobile technologies made it easier to access and share information for most people worldwide. Among the most powerful information spreading platforms are the Online Social Networks (OSN)s that allow Internet-connected users to share different information such as instant messages, tweets, photos, and videos. Adding to that many governmental and private institutions use the OSNs such as Twitter for official announcements. Consequently, there is a tremendous need to provide the required level of security for OSN users. However, there are many challenges due to the different protocols and variety of mobile apps used to access OSNs. Therefore, traditional security techniques fail to provide the needed security and privacy, and more intelligence is required. Computational intelligence adds high-speed computation, fault tolerance, adaptability, and error resilience when used to ensure security in OSN apps. This research provides a comprehensive related work survey and investigates the application of artificial neural networks for intrusion detection systems and spam filtering for OSNs. In addition, we use the concept of social graphs and weighted cliques in the detection of suspicious behavior of certain online groups and to prevent further planned actions such as cyber/terrorist attacks before they happen

    On Privacy-Enhanced Distributed Analytics in Online Social Networks

    Get PDF
    More than half of the world's population benefits from online social network (OSN) services. A considerable part of these services is mainly based on applying analytics on user data to infer their preferences and enrich their experience accordingly. At the same time, user data is monetized by service providers to run their business models. Therefore, providers tend to extensively collect (personal) data about users. However, this data is oftentimes used for various purposes without informed consent of the users. Providers share this data in different forms with third parties (e.g., data brokers). Moreover, user sensitive data was repeatedly a subject of unauthorized access by malicious parties. These issues have demonstrated the insufficient commitment of providers to user privacy, and consequently, raised users' concerns. Despite the emergence of privacy regulations (e.g., GDPR and CCPA), recent studies showed that user personal data collection and sharing sensitive data are still continuously increasing. A number of privacy-friendly OSNs have been proposed to enhance user privacy by reducing the need for central service providers. However, this improvement in privacy protection usually comes at the cost of losing social connectivity and many analytics-based services of the wide-spread OSNs. This dissertation addresses this issue by first proposing an approach to privacy-friendly OSNs that maintains established social connections. Second, approaches that allow users to collaboratively apply distributed analytics while preserving their privacy are presented. Finally, the dissertation contributes to better assessment and mitigation of the risks associated with distributed analytics. These three research directions are treated through the following six contributions. Conceptualizing Hybrid Online Social Networks: We conceptualize a hybrid approach to privacy-friendly OSNs, HOSN. This approach combines the benefits of using COSNs and DOSN. Users can maintain their social experience in their preferred COSN while being provided with additional means to enhance their privacy. Users can seamlessly post public content or private content that is accessible only by authorized users (friends) beyond the reach of the service providers. Improving the Trustworthiness of HOSNs: We conceptualize software features to address users' privacy concerns in OSNs. We prototype these features in our HOSN}approach and evaluate their impact on the privacy concerns and the trustworthiness of the approach. Also, we analyze the relationships between four important aspects that influence users' behavior in OSNs: privacy concerns, trust beliefs, risk beliefs, and the willingness to use. Privacy-Enhanced Association Rule Mining: We present an approach to enable users to apply efficiently privacy-enhanced association rule mining on distributed data. This approach can be employed in DOSN and HOSN to generate recommendations. We leverage a privacy-enhanced distributed graph sampling method to reduce the data required for the mining and lower the communication and computational overhead. Then, we apply a distributed frequent itemset mining algorithm in a privacy-friendly manner. Privacy Enhancements on Federated Learning (FL): We identify several privacy-related issues in the emerging distributed machine learning technique, FL. These issues are mainly due to the centralized nature of this technique. We discuss tackling these issues by applying FL in a hierarchical architecture. The benefits of this approach include a reduction in the centralization of control and the ability to place defense and verification methods more flexibly and efficiently within the hierarchy. Systematic Analysis of Threats in Federated Learning: We conduct a critical study of the existing attacks in FL to better understand the actual risk of these attacks under real-world scenarios. First, we structure the literature in this field and show the research foci and gaps. Then, we highlight a number of issues in (1) the assumptions commonly made by researchers and (2) the evaluation practices. Finally, we discuss the implications of these issues on the applicability of the proposed attacks and recommend several remedies. Label Leakage from Gradients: We identify a risk of information leakage when sharing gradients in FL. We demonstrate the severity of this risk by proposing a novel attack that extracts the user annotations that describe the data (i.e., ground-truth labels) from gradients. We show the high effectiveness of the attack under different settings such as different datasets and model architectures. We also test several defense mechanisms to mitigate this attack and conclude the effective ones

    Privacy Intelligence: A Survey on Image Sharing on Online Social Networks

    Full text link
    Image sharing on online social networks (OSNs) has become an indispensable part of daily social activities, but it has also led to an increased risk of privacy invasion. The recent image leaks from popular OSN services and the abuse of personal photos using advanced algorithms (e.g. DeepFake) have prompted the public to rethink individual privacy needs when sharing images on OSNs. However, OSN image sharing itself is relatively complicated, and systems currently in place to manage privacy in practice are labor-intensive yet fail to provide personalized, accurate and flexible privacy protection. As a result, an more intelligent environment for privacy-friendly OSN image sharing is in demand. To fill the gap, we contribute a systematic survey of 'privacy intelligence' solutions that target modern privacy issues related to OSN image sharing. Specifically, we present a high-level analysis framework based on the entire lifecycle of OSN image sharing to address the various privacy issues and solutions facing this interdisciplinary field. The framework is divided into three main stages: local management, online management and social experience. At each stage, we identify typical sharing-related user behaviors, the privacy issues generated by those behaviors, and review representative intelligent solutions. The resulting analysis describes an intelligent privacy-enhancing chain for closed-loop privacy management. We also discuss the challenges and future directions existing at each stage, as well as in publicly available datasets.Comment: 32 pages, 9 figures. Under revie
    • …
    corecore