227 research outputs found

    Tree-structure Expectation Propagation for Decoding LDPC codes over Binary Erasure Channels

    Full text link
    Expectation Propagation is a generalization to Belief Propagation (BP) in two ways. First, it can be used with any exponential family distribution over the cliques in the graph. Second, it can impose additional constraints on the marginal distributions. We use this second property to impose pair-wise marginal distribution constraints in some check nodes of the LDPC Tanner graph. These additional constraints allow decoding the received codeword when the BP decoder gets stuck. In this paper, we first present the new decoding algorithm, whose complexity is identical to the BP decoder, and we then prove that it is able to decode codewords with a larger fraction of erasures, as the block size tends to infinity. The proposed algorithm can be also understood as a simplification of the Maxwell decoder, but without its computational complexity. We also illustrate that the new algorithm outperforms the BP decoder for finite block-siz

    A Novel Stochastic Decoding of LDPC Codes with Quantitative Guarantees

    Full text link
    Low-density parity-check codes, a class of capacity-approaching linear codes, are particularly recognized for their efficient decoding scheme. The decoding scheme, known as the sum-product, is an iterative algorithm consisting of passing messages between variable and check nodes of the factor graph. The sum-product algorithm is fully parallelizable, owing to the fact that all messages can be update concurrently. However, since it requires extensive number of highly interconnected wires, the fully-parallel implementation of the sum-product on chips is exceedingly challenging. Stochastic decoding algorithms, which exchange binary messages, are of great interest for mitigating this challenge and have been the focus of extensive research over the past decade. They significantly reduce the required wiring and computational complexity of the message-passing algorithm. Even though stochastic decoders have been shown extremely effective in practice, the theoretical aspect and understanding of such algorithms remains limited at large. Our main objective in this paper is to address this issue. We first propose a novel algorithm referred to as the Markov based stochastic decoding. Then, we provide concrete quantitative guarantees on its performance for tree-structured as well as general factor graphs. More specifically, we provide upper-bounds on the first and second moments of the error, illustrating that the proposed algorithm is an asymptotically consistent estimate of the sum-product algorithm. We also validate our theoretical predictions with experimental results, showing we achieve comparable performance to other practical stochastic decoders.Comment: This paper has been submitted to IEEE Transactions on Information Theory on May 24th 201

    Local Optimality Certificates for LP Decoding of Tanner Codes

    Full text link
    We present a new combinatorial characterization for local optimality of a codeword in an irregular Tanner code. The main novelty in this characterization is that it is based on a linear combination of subtrees in the computation trees. These subtrees may have any degree in the local code nodes and may have any height (even greater than the girth). We expect this new characterization to lead to improvements in bounds for successful decoding. We prove that local optimality in this new characterization implies ML-optimality and LP-optimality, as one would expect. Finally, we show that is possible to compute efficiently a certificate for the local optimality of a codeword given an LLR vector

    Distance Properties of Short LDPC Codes and their Impact on the BP, ML and Near-ML Decoding Performance

    Full text link
    Parameters of LDPC codes, such as minimum distance, stopping distance, stopping redundancy, girth of the Tanner graph, and their influence on the frame error rate performance of the BP, ML and near-ML decoding over a BEC and an AWGN channel are studied. Both random and structured LDPC codes are considered. In particular, the BP decoding is applied to the code parity-check matrices with an increasing number of redundant rows, and the convergence of the performance to that of the ML decoding is analyzed. A comparison of the simulated BP, ML, and near-ML performance with the improved theoretical bounds on the error probability based on the exact weight spectrum coefficients and the exact stopping size spectrum coefficients is presented. It is observed that decoding performance very close to the ML decoding performance can be achieved with a relatively small number of redundant rows for some codes, for both the BEC and the AWGN channels

    Tree-Structure Expectation Propagation for LDPC Decoding over the BEC

    Full text link
    We present the tree-structure expectation propagation (Tree-EP) algorithm to decode low-density parity-check (LDPC) codes over discrete memoryless channels (DMCs). EP generalizes belief propagation (BP) in two ways. First, it can be used with any exponential family distribution over the cliques in the graph. Second, it can impose additional constraints on the marginal distributions. We use this second property to impose pair-wise marginal constraints over pairs of variables connected to a check node of the LDPC code's Tanner graph. Thanks to these additional constraints, the Tree-EP marginal estimates for each variable in the graph are more accurate than those provided by BP. We also reformulate the Tree-EP algorithm for the binary erasure channel (BEC) as a peeling-type algorithm (TEP) and we show that the algorithm has the same computational complexity as BP and it decodes a higher fraction of errors. We describe the TEP decoding process by a set of differential equations that represents the expected residual graph evolution as a function of the code parameters. The solution of these equations is used to predict the TEP decoder performance in both the asymptotic regime and the finite-length regime over the BEC. While the asymptotic threshold of the TEP decoder is the same as the BP decoder for regular and optimized codes, we propose a scaling law (SL) for finite-length LDPC codes, which accurately approximates the TEP improved performance and facilitates its optimization

    Expander Chunked Codes

    Full text link
    Chunked codes are efficient random linear network coding (RLNC) schemes with low computational cost, where the input packets are encoded into small chunks (i.e., subsets of the coded packets). During the network transmission, RLNC is performed within each chunk. In this paper, we first introduce a simple transfer matrix model to characterize the transmission of chunks, and derive some basic properties of the model to facilitate the performance analysis. We then focus on the design of overlapped chunked codes, a class of chunked codes whose chunks are non-disjoint subsets of input packets, which are of special interest since they can be encoded with negligible computational cost and in a causal fashion. We propose expander chunked (EC) codes, the first class of overlapped chunked codes that have an analyzable performance,where the construction of the chunks makes use of regular graphs. Numerical and simulation results show that in some practical settings, EC codes can achieve rates within 91 to 97 percent of the optimum and outperform the state-of-the-art overlapped chunked codes significantly.Comment: 26 pages, 3 figures, submitted for journal publicatio

    Density Evolution for Asymmetric Memoryless Channels

    Full text link
    Density evolution is one of the most powerful analytical tools for low-density parity-check (LDPC) codes and graph codes with message passing decoding algorithms. With channel symmetry as one of its fundamental assumptions, density evolution (DE) has been widely and successfully applied to different channels, including binary erasure channels, binary symmetric channels, binary additive white Gaussian noise channels, etc. This paper generalizes density evolution for non-symmetric memoryless channels, which in turn broadens the applications to general memoryless channels, e.g. z-channels, composite white Gaussian noise channels, etc. The central theorem underpinning this generalization is the convergence to perfect projection for any fixed size supporting tree. A new iterative formula of the same complexity is then presented and the necessary theorems for the performance concentration theorems are developed. Several properties of the new density evolution method are explored, including stability results for general asymmetric memoryless channels. Simulations, code optimizations, and possible new applications suggested by this new density evolution method are also provided. This result is also used to prove the typicality of linear LDPC codes among the coset code ensemble when the minimum check node degree is sufficiently large. It is shown that the convergence to perfect projection is essential to the belief propagation algorithm even when only symmetric channels are considered. Hence the proof of the convergence to perfect projection serves also as a completion of the theory of classical density evolution for symmetric memoryless channels.Comment: To appear in the IEEE Transactions on Information Theor

    On Universal Properties of Capacity-Approaching LDPC Ensembles

    Full text link
    This paper is focused on the derivation of some universal properties of capacity-approaching low-density parity-check (LDPC) code ensembles whose transmission takes place over memoryless binary-input output-symmetric (MBIOS) channels. Properties of the degree distributions, graphical complexity and the number of fundamental cycles in the bipartite graphs are considered via the derivation of information-theoretic bounds. These bounds are expressed in terms of the target block/ bit error probability and the gap (in rate) to capacity. Most of the bounds are general for any decoding algorithm, and some others are proved under belief propagation (BP) decoding. Proving these bounds under a certain decoding algorithm, validates them automatically also under any sub-optimal decoding algorithm. A proper modification of these bounds makes them universal for the set of all MBIOS channels which exhibit a given capacity. Bounds on the degree distributions and graphical complexity apply to finite-length LDPC codes and to the asymptotic case of an infinite block length. The bounds are compared with capacity-approaching LDPC code ensembles under BP decoding, and they are shown to be informative and are easy to calculate. Finally, some interesting open problems are considered.Comment: Published in the IEEE Trans. on Information Theory, vol. 55, no. 7, pp. 2956 - 2990, July 200
    • 

    corecore