47,802 research outputs found

    Robust and cost-effective approach for discovering action rules

    Get PDF
    The main goal of Knowledge Discovery in Databases is to find interesting and usable patterns, meaningful in their domain. Actionable Knowledge Discovery came to existence as a direct respond to the need of finding more usable patterns called actionable patterns. Traditional data mining and algorithms are often confined to deliver frequent patterns and come short for suggesting how to make these patterns actionable. In this scenario the users are expected to act. However, the users are not advised about what to do with delivered patterns in order to make them usable. In this paper, we present an automated approach to focus on not only creating rules but also making the discovered rules actionable. Up to now few works have been reported in this field which lacking incomprehensibility to the user, overlooking the cost and not providing rule generality. Here we attempt to present a method to resolving these issues. In this paper CEARDM method is proposed to discover cost-effective action rules from data. These rules offer some cost-effective changes to transferring low profitable instances to higher profitable ones. We also propose an idea for improving in CEARDM method

    Relatedness Measures to Aid the Transfer of Building Blocks among Multiple Tasks

    Full text link
    Multitask Learning is a learning paradigm that deals with multiple different tasks in parallel and transfers knowledge among them. XOF, a Learning Classifier System using tree-based programs to encode building blocks (meta-features), constructs and collects features with rich discriminative information for classification tasks in an observed list. This paper seeks to facilitate the automation of feature transferring in between tasks by utilising the observed list. We hypothesise that the best discriminative features of a classification task carry its characteristics. Therefore, the relatedness between any two tasks can be estimated by comparing their most appropriate patterns. We propose a multiple-XOF system, called mXOF, that can dynamically adapt feature transfer among XOFs. This system utilises the observed list to estimate the task relatedness. This method enables the automation of transferring features. In terms of knowledge discovery, the resemblance estimation provides insightful relations among multiple data. We experimented mXOF on various scenarios, e.g. representative Hierarchical Boolean problems, classification of distinct classes in the UCI Zoo dataset, and unrelated tasks, to validate its abilities of automatic knowledge-transfer and estimating task relatedness. Results show that mXOF can estimate the relatedness reasonably between multiple tasks to aid the learning performance with the dynamic feature transferring.Comment: accepted by The Genetic and Evolutionary Computation Conference (GECCO 2020

    Inductive queries for a drug designing robot scientist

    Get PDF
    It is increasingly clear that machine learning algorithms need to be integrated in an iterative scientific discovery loop, in which data is queried repeatedly by means of inductive queries and where the computer provides guidance to the experiments that are being performed. In this chapter, we summarise several key challenges in achieving this integration of machine learning and data mining algorithms in methods for the discovery of Quantitative Structure Activity Relationships (QSARs). We introduce the concept of a robot scientist, in which all steps of the discovery process are automated; we discuss the representation of molecular data such that knowledge discovery tools can analyse it, and we discuss the adaptation of machine learning and data mining algorithms to guide QSAR experiments
    • …
    corecore