9,202 research outputs found

    Wide-coverage deep statistical parsing using automatic dependency structure annotation

    Get PDF
    A number of researchers (Lin 1995; Carroll, Briscoe, and Sanfilippo 1998; Carroll et al. 2002; Clark and Hockenmaier 2002; King et al. 2003; Preiss 2003; Kaplan et al. 2004;Miyao and Tsujii 2004) have convincingly argued for the use of dependency (rather than CFG-tree) representations for parser evaluation. Preiss (2003) and Kaplan et al. (2004) conducted a number of experiments comparing “deep” hand-crafted wide-coverage with “shallow” treebank- and machine-learning based parsers at the level of dependencies, using simple and automatic methods to convert tree output generated by the shallow parsers into dependencies. In this article, we revisit the experiments in Preiss (2003) and Kaplan et al. (2004), this time using the sophisticated automatic LFG f-structure annotation methodologies of Cahill et al. (2002b, 2004) and Burke (2006), with surprising results. We compare various PCFG and history-based parsers (based on Collins, 1999; Charniak, 2000; Bikel, 2002) to find a baseline parsing system that fits best into our automatic dependency structure annotation technique. This combined system of syntactic parser and dependency structure annotation is compared to two hand-crafted, deep constraint-based parsers (Carroll and Briscoe 2002; Riezler et al. 2002). We evaluate using dependency-based gold standards (DCU 105, PARC 700, CBS 500 and dependencies for WSJ Section 22) and use the Approximate Randomization Test (Noreen 1989) to test the statistical significance of the results. Our experiments show that machine-learning-based shallow grammars augmented with sophisticated automatic dependency annotation technology outperform hand-crafted, deep, widecoverage constraint grammars. Currently our best system achieves an f-score of 82.73% against the PARC 700 Dependency Bank (King et al. 2003), a statistically significant improvement of 2.18%over the most recent results of 80.55%for the hand-crafted LFG grammar and XLE parsing system of Riezler et al. (2002), and an f-score of 80.23% against the CBS 500 Dependency Bank (Carroll, Briscoe, and Sanfilippo 1998), a statistically significant 3.66% improvement over the 76.57% achieved by the hand-crafted RASP grammar and parsing system of Carroll and Briscoe (2002)

    Probabilistic parsing

    Get PDF
    Postprin

    Treebank-based multilingual unification-grammar development

    Get PDF
    Broad-coverage, deep unification grammar development is time-consuming and costly. This problem can be exacerbated in multilingual grammar development scenarios. Recently (Cahill et al., 2002) presented a treebank-based methodology to semi-automatically create broadcoverage, deep, unification grammar resources for English. In this paper we present a project which adapts this model to a multilingual grammar development scenario to obtain robust, wide-coverage, probabilistic Lexical-Functional Grammars (LFGs) for English and German via automatic f-structure annotation algorithms based on the Penn-II and TIGER treebanks. We outline our method used to extract a probabilistic LFG from the TIGER treebank and report on the quality of the f-structures produced. We achieve an f-score of 66.23 on the evaluation of 100 random sentences against a manually constructed gold standard

    Automatic acquisition of LFG resources for German - as good as it gets

    Get PDF
    We present data-driven methods for the acquisition of LFG resources from two German treebanks. We discuss problems specific to semi-free word order languages as well as problems arising fromthe data structures determined by the design of the different treebanks. We compare two ways of encoding semi-free word order, as done in the two German treebanks, and argue that the design of the TiGer treebank is more adequate for the acquisition of LFG resources. Furthermore, we describe an architecture for LFG grammar acquisition for German, based on the two German treebanks, and compare our results with a hand-crafted German LFG grammar

    Evaluation of LTAG parsing with supertag compaction

    Get PDF
    One of the biggest concerns that has been raised over the feasibility of using large-scale LTAGs in NLP is the amount of redundancy within a grammar¿s elementary tree set. This has led to various proposals on how best to represent grammars in a way that makes them compact and easily maintained (Vijay-Shanker and Schabes, 1992; Becker, 1993; Becker, 1994; Evans, Gazdar and Weir, 1995; Candito, 1996). Unfortunately, while this work can help to make the storage of grammars more efficient, it does nothing to prevent the problem reappearing when the grammar is processed by a parser and the complete set of trees is reproduced. In this paper we are concerned with an approach that addresses this problem of computational redundancy in the trees, and evaluate its effectiveness

    Inducing Compact but Accurate Tree-Substitution Grammars

    Get PDF
    Tree substitution grammars (TSGs) are a compelling alternative to context-free grammars for modelling syntax. However, many popular techniques for estimating weighted TSGs (under the moniker of Data Oriented Parsing) suffer from the problems of inconsistency and over-fitting. We present a theoretically principled model which solves these problems using a Bayesian non-parametric formulation. Our model learns compact and simple grammars, uncovering latent linguistic structures (e.g., verb subcategorisation), and in doing so far out-performs a standard PCFG.

    Compacting the Penn Treebank Grammar

    Full text link
    Treebanks, such as the Penn Treebank (PTB), offer a simple approach to obtaining a broad coverage grammar: one can simply read the grammar off the parse trees in the treebank. While such a grammar is easy to obtain, a square-root rate of growth of the rule set with corpus size suggests that the derived grammar is far from complete and that much more treebanked text would be required to obtain a complete grammar, if one exists at some limit. However, we offer an alternative explanation in terms of the underspecification of structures within the treebank. This hypothesis is explored by applying an algorithm to compact the derived grammar by eliminating redundant rules -- rules whose right hand sides can be parsed by other rules. The size of the resulting compacted grammar, which is significantly less than that of the full treebank grammar, is shown to approach a limit. However, such a compacted grammar does not yield very good performance figures. A version of the compaction algorithm taking rule probabilities into account is proposed, which is argued to be more linguistically motivated. Combined with simple thresholding, this method can be used to give a 58% reduction in grammar size without significant change in parsing performance, and can produce a 69% reduction with some gain in recall, but a loss in precision.Comment: 5 pages, 2 figure

    Treebank-based acquisition of wide-coverage, probabilistic LFG resources: project overview, results and evaluation

    Get PDF
    This paper presents an overview of a project to acquire wide-coverage, probabilistic Lexical-Functional Grammar (LFG) resources from treebanks. Our approach is based on an automatic annotation algorithm that annotates “raw” treebank trees with LFG f-structure information approximating to basic predicate-argument/dependency structure. From the f-structure-annotated treebank we extract probabilistic unification grammar resources. We present the annotation algorithm, the extraction of lexical information and the acquisition of wide-coverage and robust PCFG-based LFG approximations including long-distance dependency resolution. We show how the methodology can be applied to multilingual, treebank-based unification grammar acquisition. Finally we show how simple (quasi-)logical forms can be derived automatically from the f-structures generated for the treebank trees

    Data-Oriented Language Processing. An Overview

    Full text link
    During the last few years, a new approach to language processing has started to emerge, which has become known under various labels such as "data-oriented parsing", "corpus-based interpretation", and "tree-bank grammar" (cf. van den Berg et al. 1994; Bod 1992-96; Bod et al. 1996a/b; Bonnema 1996; Charniak 1996a/b; Goodman 1996; Kaplan 1996; Rajman 1995a/b; Scha 1990-92; Sekine & Grishman 1995; Sima'an et al. 1994; Sima'an 1995-96; Tugwell 1995). This approach, which we will call "data-oriented processing" or "DOP", embodies the assumption that human language perception and production works with representations of concrete past language experiences, rather than with abstract linguistic rules. The models that instantiate this approach therefore maintain large corpora of linguistic representations of previously occurring utterances. When processing a new input utterance, analyses of this utterance are constructed by combining fragments from the corpus; the occurrence-frequencies of the fragments are used to estimate which analysis is the most probable one. In this paper we give an in-depth discussion of a data-oriented processing model which employs a corpus of labelled phrase-structure trees. Then we review some other models that instantiate the DOP approach. Many of these models also employ labelled phrase-structure trees, but use different criteria for extracting fragments from the corpus or employ different disambiguation strategies (Bod 1996b; Charniak 1996a/b; Goodman 1996; Rajman 1995a/b; Sekine & Grishman 1995; Sima'an 1995-96); other models use richer formalisms for their corpus annotations (van den Berg et al. 1994; Bod et al., 1996a/b; Bonnema 1996; Kaplan 1996; Tugwell 1995).Comment: 34 pages, Postscrip
    corecore