8,640 research outputs found

    On the performance of routing algorithms in wormhole-switched multicomputer networks

    Get PDF
    This paper presents a comparative performance study of adaptive and deterministic routing algorithms in wormhole-switched hypercubes and investigates the performance vicissitudes of these routing schemes under a variety of network operating conditions. Despite the previously reported results, our results show that the adaptive routing does not consistently outperform the deterministic routing even for high dimensional networks. In fact, it appears that the superiority of adaptive routing is highly dependent to the broadcast traffic rate generated at each node and it begins to deteriorate by growing the broadcast rate of generated message

    Broadcast Strategies with Probabilistic Delivery Guarantee in Multi-Channel Multi-Interface Wireless Mesh Networks

    Full text link
    Multi-channel multi-interface Wireless Mesh Networks permit to spread the load across orthogonal channels to improve network capacity. Although broadcast is vital for many layer-3 protocols, proposals for taking advantage of multiple channels mostly focus on unicast transmissions. In this paper, we propose broadcast algorithms that fit any channel and interface assignment strategy. They guarantee that a broadcast packet is delivered with a minimum probability to all neighbors. Our simulations show that the proposed algorithms efficiently limit the overhead

    The complexity of resolving conflicts on MAC

    Full text link
    We consider the fundamental problem of multiple stations competing to transmit on a multiple access channel (MAC). We are given nn stations out of which at most dd are active and intend to transmit a message to other stations using MAC. All stations are assumed to be synchronized according to a time clock. If ll stations node transmit in the same round, then the MAC provides the feedback whether l=0l=0, l=2l=2 (collision occurred) or l=1l=1. When l=1l=1, then a single station is indeed able to successfully transmit a message, which is received by all other nodes. For the above problem the active stations have to schedule their transmissions so that they can singly, transmit their messages on MAC, based only on the feedback received from the MAC in previous round. For the above problem it was shown in [Greenberg, Winograd, {\em A Lower bound on the Time Needed in the Worst Case to Resolve Conflicts Deterministically in Multiple Access Channels}, Journal of ACM 1985] that every deterministic adaptive algorithm should take Ω(d(lgn)/(lgd))\Omega(d (\lg n)/(\lg d)) rounds in the worst case. The fastest known deterministic adaptive algorithm requires O(dlgn)O(d \lg n) rounds. The gap between the upper and lower bound is O(lgd)O(\lg d) round. It is substantial for most values of dd: When d=d = constant and dO(nϵ)d \in O(n^{\epsilon}) (for any constant ϵ1\epsilon \leq 1, the lower bound is respectively O(lgn)O(\lg n) and O(n), which is trivial in both cases. Nevertheless, the above lower bound is interesting indeed when dd \in poly(lgn\lg n). In this work, we present a novel counting argument to prove a tight lower bound of Ω(dlgn)\Omega(d \lg n) rounds for all deterministic, adaptive algorithms, closing this long standing open question.}Comment: Xerox internal report 27th July; 7 page

    Algorithmic Aspects of Energy-Delay Tradeoff in Multihop Cooperative Wireless Networks

    Full text link
    We consider the problem of energy-efficient transmission in delay constrained cooperative multihop wireless networks. The combinatorial nature of cooperative multihop schemes makes it difficult to design efficient polynomial-time algorithms for deciding which nodes should take part in cooperation, and when and with what power they should transmit. In this work, we tackle this problem in memoryless networks with or without delay constraints, i.e., quality of service guarantee. We analyze a wide class of setups, including unicast, multicast, and broadcast, and two main cooperative approaches, namely: energy accumulation (EA) and mutual information accumulation (MIA). We provide a generalized algorithmic formulation of the problem that encompasses all those cases. We investigate the similarities and differences of EA and MIA in our generalized formulation. We prove that the broadcast and multicast problems are, in general, not only NP hard but also o(log(n)) inapproximable. We break these problems into three parts: ordering, scheduling and power control, and propose a novel algorithm that, given an ordering, can optimally solve the joint power allocation and scheduling problems simultaneously in polynomial time. We further show empirically that this algorithm used in conjunction with an ordering derived heuristically using the Dijkstra's shortest path algorithm yields near-optimal performance in typical settings. For the unicast case, we prove that although the problem remains NP hard with MIA, it can be solved optimally and in polynomial time when EA is used. We further use our algorithm to study numerically the trade-off between delay and power-efficiency in cooperative broadcast and compare the performance of EA vs MIA as well as the performance of our cooperative algorithm with a smart noncooperative algorithm in a broadcast setting.Comment: 12 pages, 9 figure
    corecore