4,691 research outputs found

    Modular lifelong machine learning

    Get PDF
    Deep learning has drastically improved the state-of-the-art in many important fields, including computer vision and natural language processing (LeCun et al., 2015). However, it is expensive to train a deep neural network on a machine learning problem. The overall training cost further increases when one wants to solve additional problems. Lifelong machine learning (LML) develops algorithms that aim to efficiently learn to solve a sequence of problems, which become available one at a time. New problems are solved with less resources by transferring previously learned knowledge. At the same time, an LML algorithm needs to retain good performance on all encountered problems, thus avoiding catastrophic forgetting. Current approaches do not possess all the desired properties of an LML algorithm. First, they primarily focus on preventing catastrophic forgetting (Diaz-Rodriguez et al., 2018; Delange et al., 2021). As a result, they neglect some knowledge transfer properties. Furthermore, they assume that all problems in a sequence share the same input space. Finally, scaling these methods to a large sequence of problems remains a challenge. Modular approaches to deep learning decompose a deep neural network into sub-networks, referred to as modules. Each module can then be trained to perform an atomic transformation, specialised in processing a distinct subset of inputs. This modular approach to storing knowledge makes it easy to only reuse the subset of modules which are useful for the task at hand. This thesis introduces a line of research which demonstrates the merits of a modular approach to lifelong machine learning, and its ability to address the aforementioned shortcomings of other methods. Compared to previous work, we show that a modular approach can be used to achieve more LML properties than previously demonstrated. Furthermore, we develop tools which allow modular LML algorithms to scale in order to retain said properties on longer sequences of problems. First, we introduce HOUDINI, a neurosymbolic framework for modular LML. HOUDINI represents modular deep neural networks as functional programs and accumulates a library of pre-trained modules over a sequence of problems. Given a new problem, we use program synthesis to select a suitable neural architecture, as well as a high-performing combination of pre-trained and new modules. We show that our approach has most of the properties desired from an LML algorithm. Notably, it can perform forward transfer, avoid negative transfer and prevent catastrophic forgetting, even across problems with disparate input domains and problems which require different neural architectures. Second, we produce a modular LML algorithm which retains the properties of HOUDINI but can also scale to longer sequences of problems. To this end, we fix the choice of a neural architecture and introduce a probabilistic search framework, PICLE, for searching through different module combinations. To apply PICLE, we introduce two probabilistic models over neural modules which allows us to efficiently identify promising module combinations. Third, we phrase the search over module combinations in modular LML as black-box optimisation, which allows one to make use of methods from the setting of hyperparameter optimisation (HPO). We then develop a new HPO method which marries a multi-fidelity approach with model-based optimisation. We demonstrate that this leads to improvement in anytime performance in the HPO setting and discuss how this can in turn be used to augment modular LML methods. Overall, this thesis identifies a number of important LML properties, which have not all been attained in past methods, and presents an LML algorithm which can achieve all of them, apart from backward transfer

    k-Means

    Get PDF

    Scaling up integrated photonic reservoirs towards low-power high-bandwidth computing

    No full text

    Intelligent computing : the latest advances, challenges and future

    Get PDF
    Computing is a critical driving force in the development of human civilization. In recent years, we have witnessed the emergence of intelligent computing, a new computing paradigm that is reshaping traditional computing and promoting digital revolution in the era of big data, artificial intelligence and internet-of-things with new computing theories, architectures, methods, systems, and applications. Intelligent computing has greatly broadened the scope of computing, extending it from traditional computing on data to increasingly diverse computing paradigms such as perceptual intelligence, cognitive intelligence, autonomous intelligence, and human computer fusion intelligence. Intelligence and computing have undergone paths of different evolution and development for a long time but have become increasingly intertwined in recent years: intelligent computing is not only intelligence-oriented but also intelligence-driven. Such cross-fertilization has prompted the emergence and rapid advancement of intelligent computing

    Modelling, Monitoring, Control and Optimization for Complex Industrial Processes

    Get PDF
    This reprint includes 22 research papers and an editorial, collected from the Special Issue "Modelling, Monitoring, Control and Optimization for Complex Industrial Processes", highlighting recent research advances and emerging research directions in complex industrial processes. This reprint aims to promote the research field and benefit the readers from both academic communities and industrial sectors

    ON EXPRESSIVENESS, INFERENCE, AND PARAMETER ESTIMATION OF DISCRETE SEQUENCE MODELS

    Get PDF
    Huge neural autoregressive sequence models have achieved impressive performance across different applications, such as NLP, reinforcement learning, and bioinformatics. However, some lingering problems (e.g., consistency and coherency of generated texts) continue to exist, regardless of the parameter count. In the first part of this thesis, we chart a taxonomy of the expressiveness of various sequence model families (Ch 3). In particular, we put forth complexity-theoretic proofs that string latent-variable sequence models are strictly more expressive than energy-based sequence models, which in turn are more expressive than autoregressive sequence models. Based on these findings, we introduce residual energy-based sequence models, a family of energy-based sequence models (Ch 4) whose sequence weights can be evaluated efficiently, and also perform competitively against autoregressive models. However, we show how unrestricted energy-based sequence models can suffer from uncomputability; and how such a problem is generally unfixable without knowledge of the true sequence distribution (Ch 5). In the second part of the thesis, we study practical sequence model families and algorithms based on theoretical findings in the first part of the thesis. We introduce neural particle smoothing (Ch 6), a family of approximate sampling methods that work with conditional latent variable models. We also introduce neural finite-state transducers (Ch 7), which extend weighted finite state transducers with the introduction of mark strings, allowing scoring transduction paths in a finite state transducer with a neural network. Finally, we propose neural regular expressions (Ch 8), a family of neural sequence models that are easy to engineer, allowing a user to design flexible weighted relations using Marked FSTs, and combine these weighted relations together with various operations

    An onto-epistemological (re)framing and (re)connecting of organisations as praxeological multi-capital value systems

    Get PDF
    Organisation stands as one of humankind’s greatest inventions, and reconceptualising organisations to meet the ever-diversifying needs of the modern stakeholder community one of its most significant challenges. Historically, scientific management principles simplified the challenge through a profitable operations practice imperative, which reinforced a creation and destruction value dualism, and causal and value dead ends. However, value is contingent upon meeting needs, demanding that organisations leverage a wider and connected set of capitals to meet the diverse needs of modernity. This research seeks to understand how praxeologically inert legacy organisations can generate value by (re)connecting capitals and (re)framing as multi-capital value systems. The study’s setting is the university-led Made Smarter Leadership Development programme which provided an insightful longitudinal case study over the two-year programme life-cycle. The research surfaced rich qualitative insights on participant sense-making journeys across a diverse set of participant-researcher touchpoints, and also collected associated quantitative survey data. Analysis was conducted in three streams, and iteratively built up a complementary organisational model ontology. Stream one, a qualitative ethnographic study utilised grounded theory analysis to surface the prâxis (re)framing priorities of organisations. Analysis of such priorities yielded an onto-epistemological perspective of an organisation, and novel insights were generated on prâxis (re)framing strategies, organisational maturity, and how prâxes and frames combine as a relational onto-epistemological duality. Stream two’s quantitative analysis of respondent data identified the 20 significant prâxis-elements that form six systemically correlated and causally related capital factors. Findings indicate how multiple capitals connect as an organisational structure which orchestrates value flows between capital factors. Stream three elaborated on the prior two streams’ empirically-grounded foundations through sensemaking systems dynamics theory. This modelling produced both empirical findings and a generalisable methodology to reconceptualise organisations as a connected praxeological multi-capital value system. Specifically, findings informed how means-ends dynamics orchestrate complex capital interactions, which form pan-organisational value journeys, and ultimately form generalisable value archetypes. In summary, the research confirmed an organisation is a connected multi-capital praxeological value system, this outcome enabled by the discovery of a novel onto-epistemological perspective of organisations
    • …
    corecore