10,693 research outputs found

    Quantum walk speedup of backtracking algorithms

    Full text link
    We describe a general method to obtain quantum speedups of classical algorithms which are based on the technique of backtracking, a standard approach for solving constraint satisfaction problems (CSPs). Backtracking algorithms explore a tree whose vertices are partial solutions to a CSP in an attempt to find a complete solution. Assume there is a classical backtracking algorithm which finds a solution to a CSP on n variables, or outputs that none exists, and whose corresponding tree contains T vertices, each vertex corresponding to a test of a partial solution. Then we show that there is a bounded-error quantum algorithm which completes the same task using O(sqrt(T) n^(3/2) log n) tests. In particular, this quantum algorithm can be used to speed up the DPLL algorithm, which is the basis of many of the most efficient SAT solvers used in practice. The quantum algorithm is based on the use of a quantum walk algorithm of Belovs to search in the backtracking tree. We also discuss how, for certain distributions on the inputs, the algorithm can lead to an exponential reduction in expected runtime.Comment: 23 pages; v2: minor changes to presentatio

    Heuristic average-case analysis of the backtrack resolution of random 3-Satisfiability instances

    Full text link
    An analysis of the average-case complexity of solving random 3-Satisfiability (SAT) instances with backtrack algorithms is presented. We first interpret previous rigorous works in a unifying framework based on the statistical physics notions of dynamical trajectories, phase diagram and growth process. It is argued that, under the action of the Davis--Putnam--Loveland--Logemann (DPLL) algorithm, 3-SAT instances are turned into 2+p-SAT instances whose characteristic parameters (ratio alpha of clauses per variable, fraction p of 3-clauses) can be followed during the operation, and define resolution trajectories. Depending on the location of trajectories in the phase diagram of the 2+p-SAT model, easy (polynomial) or hard (exponential) resolutions are generated. Three regimes are identified, depending on the ratio alpha of the 3-SAT instance to be solved. Lower sat phase: for small ratios, DPLL almost surely finds a solution in a time growing linearly with the number N of variables. Upper sat phase: for intermediate ratios, instances are almost surely satisfiable but finding a solution requires exponential time (2 ^ (N omega) with omega>0) with high probability. Unsat phase: for large ratios, there is almost always no solution and proofs of refutation are exponential. An analysis of the growth of the search tree in both upper sat and unsat regimes is presented, and allows us to estimate omega as a function of alpha. This analysis is based on an exact relationship between the average size of the search tree and the powers of the evolution operator encoding the elementary steps of the search heuristic.Comment: to appear in Theoretical Computer Scienc

    Analysis of the computational complexity of solving random satisfiability problems using branch and bound search algorithms

    Full text link
    The computational complexity of solving random 3-Satisfiability (3-SAT) problems is investigated. 3-SAT is a representative example of hard computational tasks; it consists in knowing whether a set of alpha N randomly drawn logical constraints involving N Boolean variables can be satisfied altogether or not. Widely used solving procedures, as the Davis-Putnam-Loveland-Logeman (DPLL) algorithm, perform a systematic search for a solution, through a sequence of trials and errors represented by a search tree. In the present study, we identify, using theory and numerical experiments, easy (size of the search tree scaling polynomially with N) and hard (exponential scaling) regimes as a function of the ratio alpha of constraints per variable. The typical complexity is explicitly calculated in the different regimes, in very good agreement with numerical simulations. Our theoretical approach is based on the analysis of the growth of the branches in the search tree under the operation of DPLL. On each branch, the initial 3-SAT problem is dynamically turned into a more generic 2+p-SAT problem, where p and 1-p are the fractions of constraints involving three and two variables respectively. The growth of each branch is monitored by the dynamical evolution of alpha and p and is represented by a trajectory in the static phase diagram of the random 2+p-SAT problem. Depending on whether or not the trajectories cross the boundary between phases, single branches or full trees are generated by DPLL, resulting in easy or hard resolutions.Comment: 37 RevTeX pages, 15 figures; submitted to Phys.Rev.

    GRASP: A New Search Algorithm for Satisfiability

    No full text
    This paper introduces GRASP (Generic search Algorithm J3r the Satisfiabilily Problem), an integrated algorithmic J3amework 30r SAT that unifies several previously proposed searchpruning techniques and jcilitates identification of additional ones. GRASP is premised on the inevitability of conflicts during search and its most distinguishingjature is the augmentation of basic backtracking search with a powerful conflict analysis procedure. Analyzing conflicts to determine their causes enables GRASP to backtrack non-chronologically to earlier levels in the search tree, potentially pruning large portions of the search space. In addition, by 'ecording" the causes of conflicts, GRASP can recognize and preempt the occurrence of similar conflicts later on in the search. Einally, straighrward bookkeeping of the causali y chains leading up to conflicts a/lows GRASP to identij) assignments that are necessary jr a solution to be found. Experimental results obtained jom a large number of benchmarks, including many J3om the field of test pattern generation, indicate that application of the proposed conflict analysis techniques to SAT algorithms can be extremely ejctive jr a large number of representative classes of SAT instances

    CLPGUI: a generic graphical user interface for constraint logic programming over finite domains

    Full text link
    CLPGUI is a graphical user interface for visualizing and interacting with constraint logic programs over finite domains. In CLPGUI, the user can control the execution of a CLP program through several views of constraints, of finite domain variables and of the search tree. CLPGUI is intended to be used both for teaching purposes, and for debugging and improving complex programs of realworld scale. It is based on a client-server architecture for connecting the CLP process to a Java-based GUI process. Communication by message passing provides an open architecture which facilitates the reuse of graphical components and the porting to different constraint programming systems. Arbitrary constraints and goals can be posted incrementally from the GUI. We propose several dynamic 2D and 3D visualizations of the search tree and of the evolution of finite domain variables. We argue that the 3D representation of search trees proposed in this paper provides the most appropriate visualization of large search trees. We describe the current implementation of the annotations and of the interactive execution model in GNU-Prolog, and report some evaluation results.Comment: 16 pages; Alexandre Tessier, editor; WLPE 2002, http://xxx.lanl.gov/abs/cs.SE/020705
    • 

    corecore