57 research outputs found

    Adversarial Deep Structured Nets for Mass Segmentation from Mammograms

    Full text link
    Mass segmentation provides effective morphological features which are important for mass diagnosis. In this work, we propose a novel end-to-end network for mammographic mass segmentation which employs a fully convolutional network (FCN) to model a potential function, followed by a CRF to perform structured learning. Because the mass distribution varies greatly with pixel position, the FCN is combined with a position priori. Further, we employ adversarial training to eliminate over-fitting due to the small sizes of mammogram datasets. Multi-scale FCN is employed to improve the segmentation performance. Experimental results on two public datasets, INbreast and DDSM-BCRP, demonstrate that our end-to-end network achieves better performance than state-of-the-art approaches. \footnote{https://github.com/wentaozhu/adversarial-deep-structural-networks.git}Comment: Accepted by ISBI2018. arXiv admin note: substantial text overlap with arXiv:1612.0597

    Breast tumor segmentation and shape classification in mammograms using generative adversarial and convolutional neural network.

    Get PDF
    Mammogram inspection in search of breast tumors is a tough assignment that radiologists must carry out frequently. Therefore, image analysis methods are needed for the detection and delineation of breast tumors, which portray crucial morphological information that will support reliable diagnosis. In this paper, we proposed a conditional Generative Adversarial Network (cGAN) devised to segment a breast tumor within a region of interest (ROI) in a mammogram. The generative network learns to recognize the tumor area and to create the binary mask that outlines it. In turn, the adversarial network learns to distinguish between real (ground truth) and synthetic segmentations, thus enforcing the generative network to create binary masks as realistic as possible. The cGAN works well even when the number of training samples are limited. As a consequence, the proposed method outperforms several state-of-the-art approaches. Our working hypothesis is corroborated by diverse segmentation experiments performed on INbreast and a private in-house dataset. The proposed segmentation model, working on an image crop containing the tumor as well as a significant surrounding area of healthy tissue (loose frame ROI), provides a high Dice coefficient and Intersection over Union (IoU) of 94% and 87%, respectively. In addition, a shape descriptor based on a Convolutional Neural Network (CNN) is proposed to classify the generated masks into four tumor shapes: irregular, lobular, oval and round. The proposed shape descriptor was trained on DDSM, since it provides shape ground truth (while the other two datasets does not), yielding an overall accuracy of 80%, which outperforms the current state-of-the-art

    Deep Learning for Automated Medical Image Analysis

    Get PDF
    Medical imaging is an essential tool in many areas of medical applications, used for both diagnosis and treatment. However, reading medical images and making diagnosis or treatment recommendations require specially trained medical specialists. The current practice of reading medical images is labor-intensive, time-consuming, costly, and error-prone. It would be more desirable to have a computer-aided system that can automatically make diagnosis and treatment recommendations. Recent advances in deep learning enable us to rethink the ways of clinician diagnosis based on medical images. In this thesis, we will introduce 1) mammograms for detecting breast cancers, the most frequently diagnosed solid cancer for U.S. women, 2) lung CT images for detecting lung cancers, the most frequently diagnosed malignant cancer, and 3) head and neck CT images for automated delineation of organs at risk in radiotherapy. First, we will show how to employ the adversarial concept to generate the hard examples improving mammogram mass segmentation. Second, we will demonstrate how to use the weakly labeled data for the mammogram breast cancer diagnosis by efficiently design deep learning for multi-instance learning. Third, the thesis will walk through DeepLung system which combines deep 3D ConvNets and GBM for automated lung nodule detection and classification. Fourth, we will show how to use weakly labeled data to improve existing lung nodule detection system by integrating deep learning with a probabilistic graphic model. Lastly, we will demonstrate the AnatomyNet which is thousands of times faster and more accurate than previous methods on automated anatomy segmentation.Comment: PhD Thesi

    DEEP LEARNING BASED SEGMENTATION AND CLASSIFICATION FOR IMPROVED BREAST CANCER DETECTION

    Get PDF
    Breast Cancer is a leading killer of women globally. It is a serious health concern caused by calcifications or abnormal tissue growth in the breast. Doing a screening and identifying the nature of the tumor as benign or malignant is important to facilitate early intervention, which drastically decreases the mortality rate. Usually, it uses ultrasound images, since they are easily accessible to most people and have no drawbacks as such, unlike in the other most famous screening technique of mammograms where in some cases you may not get a clear scan. In this thesis, the approach to this problem is to build a stacked model which makes predictions on the basis of the shape, pattern, and spread of the tumor. To achieve this, typical steps are pre-processing of images followed by segmentation of the image and classification. For pre-processing, the proposed approach in this thesis uses histogram equalization that helps in improving the contrast of the image, making the tumor stand out from its surroundings, and making it easier for the segmentation step. Through segmentation, the approach uses UNet architecture with a ResNet backbone. The UNet architecture is made specifically for biomedical imaging. The aim of segmentation is to separate the tumor from the ultrasound image so that the classification model can make its predictions from this mask. The metric result of the F1-score for the segmentation model turned out to be 97.30%. For classification, the CNN base model is used for feature extraction from provided masks. These are then fed into a network and the predictions are done. The base CNN model used is ResNet50 and the neural network used for the output layer is a simple 8-layer network with ReLU activation in the hidden layers and softmax in the final decision-making layer. The ResNet weights are initialized from training on ImageNet. The ResNet50 returns 2048 features from each mask. These are then fed into the network for decision-making. The hidden layers of the neural network have 1024, 512, 256, 128, 64, 32, and 10 neurons respectively. The classification accuracy achieved for the proposed model was 98.61% with an F1 score of 98.41%. The detailed experimental results are presented along with comparative data

    Deep Learning in Cardiology

    Full text link
    The medical field is creating large amount of data that physicians are unable to decipher and use efficiently. Moreover, rule-based expert systems are inefficient in solving complicated medical tasks or for creating insights using big data. Deep learning has emerged as a more accurate and effective technology in a wide range of medical problems such as diagnosis, prediction and intervention. Deep learning is a representation learning method that consists of layers that transform the data non-linearly, thus, revealing hierarchical relationships and structures. In this review we survey deep learning application papers that use structured data, signal and imaging modalities from cardiology. We discuss the advantages and limitations of applying deep learning in cardiology that also apply in medicine in general, while proposing certain directions as the most viable for clinical use.Comment: 27 pages, 2 figures, 10 table

    Advanced Computational Methods for Oncological Image Analysis

    Get PDF
    [Cancer is the second most common cause of death worldwide and encompasses highly variable clinical and biological scenarios. Some of the current clinical challenges are (i) early diagnosis of the disease and (ii) precision medicine, which allows for treatments targeted to specific clinical cases. The ultimate goal is to optimize the clinical workflow by combining accurate diagnosis with the most suitable therapies. Toward this, large-scale machine learning research can define associations among clinical, imaging, and multi-omics studies, making it possible to provide reliable diagnostic and prognostic biomarkers for precision oncology. Such reliable computer-assisted methods (i.e., artificial intelligence) together with clinicians’ unique knowledge can be used to properly handle typical issues in evaluation/quantification procedures (i.e., operator dependence and time-consuming tasks). These technical advances can significantly improve result repeatability in disease diagnosis and guide toward appropriate cancer care. Indeed, the need to apply machine learning and computational intelligence techniques has steadily increased to effectively perform image processing operations—such as segmentation, co-registration, classification, and dimensionality reduction—and multi-omics data integration.

    Computer-aided Detection of Breast Cancer in Digital Tomosynthesis Imaging Using Deep and Multiple Instance Learning

    Get PDF
    Breast cancer is the most common cancer among women in the world. Nevertheless, early detection of breast cancer improves the chance of successful treatment. Digital breast tomosynthesis (DBT) as a new tomographic technique was developed to minimize the limitations of conventional digital mammography screening. A DBT is a quasi-three-dimensional image that is reconstructed from a small number of two-dimensional (2D) low-dose X-ray images. The 2D X-ray images are acquired over a limited angular around the breast. Our research aims to introduce computer-aided detection (CAD) frameworks to detect early signs of breast cancer in DBTs. In this thesis, we propose three CAD frameworks for detection of breast cancer in DBTs. The first CAD framework is based on hand-crafted feature extraction. Concerning early signs of breast cancer: mass, micro-calcifications, and bilateral asymmetry between left and right breast, the system includes three separate channels to detect each sign. Next two CAD frameworks automatically learn complex patterns of 2D slices using the deep convolutional neural network and the deep cardinality-restricted Boltzmann machines. Finally, the CAD frameworks employ a multiple-instance learning approach with randomized trees algorithm to classify DBT images based on extracted information from 2D slices. The frameworks operate on 2D slices which are generated from DBT volumes. These frameworks are developed and evaluated using 5,040 2D image slices obtained from 87 DBT volumes. We demonstrate the validation and usefulness of the proposed CAD frameworks within empirical experiments for detecting breast cancer in DBTs

    Multimodal representation learning with neural networks

    Get PDF
    Abstract: Representation learning methods have received a lot of attention by researchers and practitioners because of their successful application to complex problems in areas such as computer vision, speech recognition and text processing [1]. Many of these promising results are due to the development of methods to automatically learn the representation of complex objects directly from large amounts of sample data [2]. These efforts have concentrated on data involving one type of information (images, text, speech, etc.), despite data being naturally multimodal. Multimodality refers to the fact that the same real-world concept can be described by different views or data types. Addressing multimodal automatic analysis faces three main challenges: feature learning and extraction, modeling of relationships between data modalities and scalability to large multimodal collections [3, 4]. This research considers the problem of leveraging multiple sources of information or data modalities in neural networks. It defines a novel model called gated multimodal unit (GMU), designed as an internal unit in a neural network architecture whose purpose is to find an intermediate representation based on a combination of data from different modalities. The GMU learns to decide how modalities influence the activation of the unit using multiplicative gates. The GMU can be used as a building block for different kinds of neural networks and can be seen as a form of intermediate fusion. The model was evaluated on four supervised learning tasks in conjunction with fully-connected and convolutional neural networks. We compare the GMU with other early and late fusion methods, outperforming classification scores in the evaluated datasets. Strategies to understand how the model gives importance to each input were also explored. By measuring correlation between gate activations and predictions, we were able to associate modalities with classes. It was found that some classes were more correlated with some particular modality. Interesting findings in genre prediction show, for instance, that the model associates the visual information with animation movies while textual information is more associated with drama or romance movies. During the development of this project, three new benchmark datasets were built and publicly released. The BCDR-F03 dataset which contains 736 mammography images and serves as benchmark for mass lesion classification. The MM-IMDb dataset containing around 27000 movie plots, poster along with 50 metadata annotations and that motivates new research in multimodal analysis. And the Goodreads dataset, a collection of 1000 books that encourages the research on success prediction based on the book content. This research also facilitates reproducibility of the present work by releasing source code implementation of the proposed methods.Doctorad

    Medical Image Analysis using Deep Relational Learning

    Full text link
    In the past ten years, with the help of deep learning, especially the rapid development of deep neural networks, medical image analysis has made remarkable progress. However, how to effectively use the relational information between various tissues or organs in medical images is still a very challenging problem, and it has not been fully studied. In this thesis, we propose two novel solutions to this problem based on deep relational learning. First, we propose a context-aware fully convolutional network that effectively models implicit relation information between features to perform medical image segmentation. The network achieves the state-of-the-art segmentation results on the Multi Modal Brain Tumor Segmentation 2017 (BraTS2017) and Multi Modal Brain Tumor Segmentation 2018 (BraTS2018) data sets. Subsequently, we propose a new hierarchical homography estimation network to achieve accurate medical image mosaicing by learning the explicit spatial relationship between adjacent frames. We use the UCL Fetoscopy Placenta dataset to conduct experiments and our hierarchical homography estimation network outperforms the other state-of-the-art mosaicing methods while generating robust and meaningful mosaicing result on unseen frames.Comment: arXiv admin note: substantial text overlap with arXiv:2007.0778
    corecore