2,358 research outputs found

    A Dependency-Based Neural Network for Relation Classification

    Full text link
    Previous research on relation classification has verified the effectiveness of using dependency shortest paths or subtrees. In this paper, we further explore how to make full use of the combination of these dependency information. We first propose a new structure, termed augmented dependency path (ADP), which is composed of the shortest dependency path between two entities and the subtrees attached to the shortest path. To exploit the semantic representation behind the ADP structure, we develop dependency-based neural networks (DepNN): a recursive neural network designed to model the subtrees, and a convolutional neural network to capture the most important features on the shortest path. Experiments on the SemEval-2010 dataset show that our proposed method achieves state-of-art results.Comment: This preprint is the full version of a short paper accepted in the annual meeting of the Association for Computational Linguistics (ACL) 2015 (Beijing, China

    Identifying high-impact sub-structures for convolution kernels in document-level sentiment classification

    Get PDF
    Convolution kernels support the modeling of complex syntactic information in machine-learning tasks. However, such models are highly sensitive to the type and size of syntactic structure used. It is therefore an important challenge to automatically identify high impact sub-structures relevant to a given task. In this paper we present a systematic study investigating (combinations of) sequence and convolution kernels using different types of substructures in document-level sentiment classification. We show that minimal sub-structures extracted from constituency and dependency trees guided by a polarity lexicon show 1.45 point absolute improvement in accuracy over a bag-of-words classifier on a widely used sentiment corpus

    Survey on Kernel-Based Relation Extraction

    Get PDF

    Deep learning for extracting protein-protein interactions from biomedical literature

    Full text link
    State-of-the-art methods for protein-protein interaction (PPI) extraction are primarily feature-based or kernel-based by leveraging lexical and syntactic information. But how to incorporate such knowledge in the recent deep learning methods remains an open question. In this paper, we propose a multichannel dependency-based convolutional neural network model (McDepCNN). It applies one channel to the embedding vector of each word in the sentence, and another channel to the embedding vector of the head of the corresponding word. Therefore, the model can use richer information obtained from different channels. Experiments on two public benchmarking datasets, AIMed and BioInfer, demonstrate that McDepCNN compares favorably to the state-of-the-art rich-feature and single-kernel based methods. In addition, McDepCNN achieves 24.4% relative improvement in F1-score over the state-of-the-art methods on cross-corpus evaluation and 12% improvement in F1-score over kernel-based methods on "difficult" instances. These results suggest that McDepCNN generalizes more easily over different corpora, and is capable of capturing long distance features in the sentences.Comment: Accepted for publication in Proceedings of the 2017 Workshop on Biomedical Natural Language Processing, 10 pages, 2 figures, 6 table
    • ā€¦
    corecore