14,452 research outputs found

    Constructing multiple unique input/output sequences using metaheuristic optimisation techniques

    Get PDF
    Multiple unique input/output sequences (UIOs) are often used to generate robust and compact test sequences in finite state machine (FSM) based testing. However, computing UIOs is NP-hard. Metaheuristic optimisation techniques (MOTs) such as genetic algorithms (GAs) and simulated annealing (SA) are effective in providing good solutions for some NP-hard problems. In the paper, the authors investigate the construction of UIOs by using MOTs. They define a fitness function to guide the search for potential UIOs and use sharing techniques to encourage MOTs to locate UIOs that are calculated as local optima in a search domain. They also compare the performance of GA and SA for UIO construction. Experimental results suggest that, after using a sharing technique, both GA and SA can find a majority of UIOs from the models under test

    Do Neural Nets Learn Statistical Laws behind Natural Language?

    Full text link
    The performance of deep learning in natural language processing has been spectacular, but the reasons for this success remain unclear because of the inherent complexity of deep learning. This paper provides empirical evidence of its effectiveness and of a limitation of neural networks for language engineering. Precisely, we demonstrate that a neural language model based on long short-term memory (LSTM) effectively reproduces Zipf's law and Heaps' law, two representative statistical properties underlying natural language. We discuss the quality of reproducibility and the emergence of Zipf's law and Heaps' law as training progresses. We also point out that the neural language model has a limitation in reproducing long-range correlation, another statistical property of natural language. This understanding could provide a direction for improving the architectures of neural networks.Comment: 21 pages, 11 figure

    Word-Sense Classification by Hierarchical Clustering

    Get PDF

    Large-scale image collection cleansing, summarization and exploration

    Get PDF
    A perennially interesting topic in the research field of large scale image collection organization is how to effectively and efficiently conduct the tasks of image cleansing, summarization and exploration. The primary objective of such an image organization system is to enhance user exploration experience with redundancy removal and summarization operations on large-scale image collection. An ideal system is to discover and utilize the visual correlation among the images, to reduce the redundancy in large-scale image collection, to organize and visualize the structure of large-scale image collection, and to facilitate exploration and knowledge discovery. In this dissertation, a novel system is developed for exploiting and navigating large-scale image collection. Our system consists of the following key components: (a) junk image filtering by incorporating bilingual search results; (b) near duplicate image detection by using a coarse-to-fine framework; (c) concept network generation and visualization; (d) image collection summarization via dictionary learning for sparse representation; and (e) a multimedia practice of graffiti image retrieval and exploration. For junk image filtering, bilingual image search results, which are adopted for the same keyword-based query, are integrated to automatically identify the clusters for the junk images and the clusters for the relevant images. Within relevant image clusters, the results are further refined by removing the duplications under a coarse-to-fine structure. The duplicate pairs are detected with both global feature (partition based color histogram) and local feature (CPAM and SIFT Bag-of-Word model). The duplications are detected and removed from the data collection to facilitate further exploration and visual correlation analysis. After junk image filtering and duplication removal, the visual concepts are further organized and visualized by the proposed concept network. An automatic algorithm is developed to generate such visual concept network which characterizes the visual correlation between image concept pairs. Multiple kernels are combined and a kernel canonical correlation analysis algorithm is used to characterize the diverse visual similarity contexts between the image concepts. The FishEye visualization technique is implemented to facilitate the navigation of image concepts through our image concept network. To better assist the exploration of large scale data collection, we design an efficient summarization algorithm to extract representative examplars. For this collection summarization task, a sparse dictionary (a small set of the most representative images) is learned to represent all the images in the given set, e.g., such sparse dictionary is treated as the summary for the given image set. The simulated annealing algorithm is adopted to learn such sparse dictionary (image summary) by minimizing an explicit optimization function. In order to handle large scale image collection, we have evaluated both the accuracy performance of the proposed algorithms and their computation efficiency. For each of the above tasks, we have conducted experiments on multiple public available image collections, such as ImageNet, NUS-WIDE, LabelMe, etc. We have observed very promising results compared to existing frameworks. The computation performance is also satisfiable for large-scale image collection applications. The original intention to design such a large-scale image collection exploration and organization system is to better service the tasks of information retrieval and knowledge discovery. For this purpose, we utilize the proposed system to a graffiti retrieval and exploration application and receive positive feedback

    Processing of an Audiobook in the Human Brain Is Shaped by Cultural Family Background

    Get PDF
    Perception of the same narrative can vary between individuals depending on a listener’s previous experiences. We studied whether and how cultural family background may shape the processing of an audiobook in the human brain. During functional magnetic resonance imaging (fMRI), 48 healthy volunteers from two different cultural family backgrounds listened to an audiobook depicting the intercultural social life of young adults with the respective cultural backgrounds. Shared cultural family background increased inter-subject correlation of hemodynamic activity in the left-hemispheric Heschl’s gyrus, insula, superior temporal gyrus, lingual gyrus and middle temporal gyrus, in the right-hemispheric lateral occipital and posterior cingulate cortices as well as in the bilateral middle temporal gyrus, middle occipital gyrus and precuneus. Thus, cultural family background is reflected in multiple areas of speech processing in the brain and may also modulate visual imagery. After neuroimaging, the participants listened to the narrative again and, after each passage, produced a list of words that had been on their minds when they heard the audiobook during neuroimaging. Cultural family background was reflected as semantic differences in these word lists as quantified by a word2vec-generated semantic model. Our findings may depict enhanced mutual understanding between persons who share similar cultural family backgrounds

    Processing of an Audiobook in the Human Brain Is Shaped by Cultural Family Background

    Get PDF
    Perception of the same narrative can vary between individuals depending on a listener’s previous experiences. We studied whether and how cultural family background may shape the processing of an audiobook in the human brain. During functional magnetic resonance imaging (fMRI), 48 healthy volunteers from two different cultural family backgrounds listened to an audiobook depicting the intercultural social life of young adults with the respective cultural backgrounds. Shared cultural family background increased inter-subject correlation of hemodynamic activity in the left-hemispheric Heschl’s gyrus, insula, superior temporal gyrus, lingual gyrus and middle temporal gyrus, in the right-hemispheric lateral occipital and posterior cingulate cortices as well as in the bilateral middle temporal gyrus, middle occipital gyrus and precuneus. Thus, cultural family background is reflected in multiple areas of speech processing in the brain and may also modulate visual imagery. After neuroimaging, the participants listened to the narrative again and, after each passage, produced a list of words that had been on their minds when they heard the audiobook during neuroimaging. Cultural family background was reflected as semantic differences in these word lists as quantified by a word2vec-generated semantic model. Our findings may depict enhanced mutual understanding between persons who share similar cultural family backgrounds
    • …
    corecore