4,023 research outputs found

    A QoS-Aware Routing Protocol for Real-time Applications in Wireless Sensor Networks

    Get PDF
    The paper presents a quality of service aware routing protocol which provides low latency for high priority packets. Packets are differentiated based on their priority by applying queuing theory. Low priority packets are transferred through less energy paths. The sensor nodes interact with the pivot nodes which in turn communicate with the sink node. This protocol can be applied in monitoring context aware physical environments for critical applications.Comment: 10 pages. arXiv admin note: text overlap with arXiv:1001.5339 by other author

    A critical analysis of research potential, challenges and future directives in industrial wireless sensor networks

    Get PDF
    In recent years, Industrial Wireless Sensor Networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper a detailed discussion on design objectives, challenges and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines and possible hazards in industrial atmosphere are discussed. The paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. The paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs

    M-ATTEMPT: A New Energy-Efficient Routing Protocol for Wireless Body Area Sensor Networks

    Get PDF
    In this paper, we propose a new routing protocol for heterogeneous Wireless Body Area Sensor Networks (WBASNs); Mobility-supporting Adaptive Threshold-based Thermal-aware Energy-efficientMulti-hop ProTocol (M-ATTEMPT). A prototype is defined for employing heterogeneous sensors on human body. Direct communication is used for real-time traffic (critical data) or on-demand data while Multi-hop communication is used for normal data delivery. One of the prime challenges in WBASNs is sensing of the heat generated by the implanted sensor nodes. The proposed routing algorithm is thermal-aware which senses the link Hot-spot and routes the data away from these links. Continuous mobility of human body causes disconnection between previous established links. So, mobility support and energy-management is introduced to overcome the problem. Linear Programming (LP) model for maximum information extraction and minimum energy consumption is presented in this study. MATLAB simulations of proposed routing algorithm are performed for lifetime and successful packet delivery in comparison with Multi-hop communication. The results show that the proposed routing algorithm has less energy consumption and more reliable as compared to Multi-hop communication.Comment: arXiv admin note: substantial text overlap with arXiv:1208.609

    A Review of the Energy Efficient and Secure Multicast Routing Protocols for Mobile Ad hoc Networks

    Full text link
    This paper presents a thorough survey of recent work addressing energy efficient multicast routing protocols and secure multicast routing protocols in Mobile Ad hoc Networks (MANETs). There are so many issues and solutions which witness the need of energy management and security in ad hoc wireless networks. The objective of a multicast routing protocol for MANETs is to support the propagation of data from a sender to all the receivers of a multicast group while trying to use the available bandwidth efficiently in the presence of frequent topology changes. Multicasting can improve the efficiency of the wireless link when sending multiple copies of messages by exploiting the inherent broadcast property of wireless transmission. Secure multicast routing plays a significant role in MANETs. However, offering energy efficient and secure multicast routing is a difficult and challenging task. In recent years, various multicast routing protocols have been proposed for MANETs. These protocols have distinguishing features and use different mechanismsComment: 15 page
    • …
    corecore