437 research outputs found

    Traversing Environments Using Possibility Graphs for Humanoid Robots

    Get PDF
    Locomotion for legged robots poses considerable challenges when confronted by obstacles and adverse environments. Footstep planners are typically only designed for one mode of locomotion, but traversing unfavorable environments may require several forms of locomotion to be sequenced together, such as walking, crawling, and jumping. Multi-modal motion planners can be used to address some of these problems, but existing implementations tend to be time-consuming and are limited to quasi-static actions. This paper presents a motion planning method to traverse complex environments using multiple categories of actions. We introduce the concept of the "Possibility Graph", which uses high-level approximations of constraint manifolds to rapidly explore the "possibility" of actions, thereby allowing lower-level single-action motion planners to be utilized more efficiently. We show that the Possibility Graph can quickly find paths through several different challenging environments which require various combinations of actions in order to traverse

    Traversing Environments Using Possibility Graphs for Humanoid Robots

    Get PDF
    Locomotion for legged robots poses considerable challenges when confronted by obstacles and adverse environments. Footstep planners are typically only designed for one mode of locomotion, but traversing unfavorable environments may require several forms of locomotion to be sequenced together, such as walking, crawling, and jumping. Multi-modal motion planners can be used to address some of these problems, but existing implementations tend to be time-consuming and are limited to quasi-static actions. This paper presents a motion planning method to traverse complex environments using multiple categories of actions. We introduce the concept of the "Possibility Graph", which uses high-level approximations of constraint manifolds to rapidly explore the "possibility" of actions, thereby allowing lower-level single-action motion planners to be utilized more efficiently. We show that the Possibility Graph can quickly find paths through several different challenging environments which require various combinations of actions in order to traverse

    Footstep and Motion Planning in Semi-unstructured Environments Using Randomized Possibility Graphs

    Get PDF
    Traversing environments with arbitrary obstacles poses significant challenges for bipedal robots. In some cases, whole body motions may be necessary to maneuver around an obstacle, but most existing footstep planners can only select from a discrete set of predetermined footstep actions; they are unable to utilize the continuum of whole body motion that is truly available to the robot platform. Existing motion planners that can utilize whole body motion tend to struggle with the complexity of large-scale problems. We introduce a planning method, called the "Randomized Possibility Graph", which uses high-level approximations of constraint manifolds to rapidly explore the "possibility" of actions, thereby allowing lower-level motion planners to be utilized more efficiently. We demonstrate simulations of the method working in a variety of semi-unstructured environments. In this context, "semi-unstructured" means the walkable terrain is flat and even, but there are arbitrary 3D obstacles throughout the environment which may need to be stepped over or maneuvered around using whole body motions.Comment: Accepted by IEEE International Conference on Robotics and Automation 201

    Overcoming barriers and increasing independence: service robots for elderly and disabled people

    Get PDF
    This paper discusses the potential for service robots to overcome barriers and increase independence of elderly and disabled people. It includes a brief overview of the existing uses of service robots by disabled and elderly people and advances in technology which will make new uses possible and provides suggestions for some of these new applications. The paper also considers the design and other conditions to be met for user acceptance. It also discusses the complementarity of assistive service robots and personal assistance and considers the types of applications and users for which service robots are and are not suitable

    Automatic Recognition of Concurrent and Coupled Human Motion Sequences

    Get PDF
    We developed methods and algorithms for all parts of a motion recognition system, i. e. Feature Extraction, Motion Segmentation and Labeling, Motion Primitive and Context Modeling as well as Decoding. We collected several datasets to compare our proposed methods with the state-of-the-art in human motion recognition. The main contributions of this thesis are a structured functional motion decomposition and a flexible and scalable motion recognition system suitable for a Humanoid Robot

    Reconfigurable and Agile Legged-Wheeled Robot Navigation in Cluttered Environments with Movable Obstacles

    Get PDF
    Legged and wheeled locomotion are two standard methods used by robots to perform navigation. Combining them to create a hybrid legged-wheeled locomotion results in increased speed, agility, and reconfigurability for the robot, allowing it to traverse a multitude of environments. The CENTAURO robot has these advantages, but they are accompanied by a higher-dimensional search space for formulating autonomous economical motion plans, especially in cluttered environments. In this article, we first review our previously presented legged-wheeled footprint reconfiguring global planner. We describe the two incremental prototypes, where the primary goal of the algorithms is to reduce the search space of possible footprints such that plans that expand the robot over the low-lying wide obstacles or narrow into passages can be computed with speed and efficiency. The planner also considers the cost of avoiding obstacles versus negotiating them by expanding over them. The second part of this article presents our new work on local obstacle pushing, which further increases the number of tight scenarios the planner can solve. The goal of the new local push-planner is to place any movable obstacle of unknown mass and inertial properties, obstructing the previously planned trajectory from our global planner, to a location devoid of obstruction. This is done while minimising the distance traveled by the robot, the distance the object is pushed, and its rotation caused by the push. Together, the local and global planners form a major part of the agile reconfigurable navigation suite for the legged-wheeled hybrid CENTAURO robot

    An Ontology-Based Expert System for the Systematic Design of Humanoid Robots

    Get PDF
    Die Entwicklung humanoider Roboter ist eine zeitaufwendige, komplexe und herausfordernde Aufgabe. Daher stellt diese Thesis einen neuen, systematischen Ansatz vor, der es erlaubt, Expertenwissen zum Entwurf humanoider Roboter zu konservieren, um damit zukünftige Entwicklungen zu unterstützen. Der Ansatz kann in drei aufeinanderfolgende Schritte unterteilt werden. Im ersten Schritt wird Wissen zum Entwurf humanoider Roboter durch die Entwicklung von Roboterkomponenten und die Analyse verwandter Arbeiten gewonnen. Dieses Wissen wird im zweiten Schritt formalisiert und in Form einer ontologischen Wissensbasis gespeichert. Im letzten Schritt wird diese Wissensbasis von einem Expertensystem verwendet, um Lösungsvorschläge zum Entwurf von Roboterkomponenten auf Grundlage von Benutzeranforderungen zu generieren. Der Ansatz wird anhand von Fallstudien zu Komponenten des humanoiden Roboters ARMAR-6 evaluiert: Sensor-Aktor-Controller-Einheiten für Robotergelenke und Roboterhände

    Mobility Strategy of Multi-Limbed Climbing Robots for Asteroid Exploration

    Full text link
    Mobility on asteroids by multi-limbed climbing robots is expected to achieve our exploration goals in such challenging environments. We propose a mobility strategy to improve the locomotion safety of climbing robots in such harsh environments that picture extremely low gravity and highly uneven terrain. Our method plans the gait by decoupling the base and limbs' movements and adjusting the main body pose to avoid ground collisions. The proposed approach includes a motion planning that reduces the reactions generated by the robot's movement by optimizing the swinging trajectory and distributing the momentum. Lower motion reactions decrease the pulling forces on the grippers, avoiding the slippage and flotation of the robot. Dynamic simulations and experiments demonstrate that the proposed method could improve the robot's mobility on the surface of asteroids.Comment: Submitted version of paper accepted for presentation at the CLAWAR 2023 (26th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines
    corecore