43 research outputs found

    Searching for missing D'Alembert waves in nonlinear system: Nizhnik-Novikov-Veselov equation

    Full text link
    In linear science, the wave motion equation with general D'Alembert wave solutions is one of the fundamental models. The D'Alembert wave is an arbitrary travelling wave moving along one direction under a fixed model (material) dependent velocity. However, the D'Alembert waves are missed when nonlinear effects are introduced to wave motions. In this paper, we study the possible travelling wave solutions, multiple soliton solutions and soliton molecules for a special (2+1)-dimensional Koteweg-de Vries (KdV) equation, the so-called Nizhnik-Novikov-Veselov (NNV) equation. The missed D'Alembert wave is re-discovered from the NNV equation. By using the velocity resonance mechanism, the soliton molecules are found to be closely related to D'Alembert waves. In fact, the soliton molecules of the NNV equation can be viewed as special D'Alembert waves. The interaction solutions among special D'Alembert type waves (nn-soliton molecules and soliton-solitoff molecules) and solitons are also discussed.Comment: 8 pages, 2 figure

    Stationary Veselov-Novikov equation and isothermally asymptotic surfaces in projective differential geometry

    Get PDF
    It is demonstrated that the stationary Veselov-Novikov (VN) and the stationary modified Veselov-Novikov (mVN) equations describe one and the same class of surfaces in projective differential geometry: the so-called isothermally asymptotic surfaces, examples of which include arbitrary quadrics and cubics, quartics of Kummer, projective transforms of affine spheres and rotation surfaces. The stationary mVN equation arises in the Wilczynski approach and plays the role of the projective "Gauss-Codazzi" equations, while the stationary VN equation follows from the Lelieuvre representation of surfaces in 3-space. This implies an explicit Backlund transformation between the stationary VN and mVN equations which is an analog of the Miura transformation between their (1+1)-dimensional limits.Comment: Latex, 13 page

    Solitary wave fission and fusion in the (2+1)-dimensional generalized Broer–Kaup system

    Get PDF
    Via a special Painlevé–Bäcklund transformation and the linear superposition theorem, we derive the general variable separation solution of the (2 + 1)-dimensional generalized Broer–Kaup system. Based on the general variable separation solution and choosing some suitable variable separated functions, new types of V-shaped and A-shaped solitary wave fusion and Y-shaped solitary wave fission phenomena are reported

    Analysis of soliton phenomena in (2+1)-dimensional Nizhnik-Novikov-Veselov model via a modified analytical technique

    Get PDF
    The present research applies an improved version of the modified Extended Direct Algebraic Method (mEDAM) called +mEDAM to examine soliton phenomena in a notable mathematical model, namely the (2+1)-dimensional Nizhnik-Novikov-Veselov Model (NNVM), which possesses potential applications in exponentially localized structure interactions. The generalized hyperbolic and trigonometric functions are used to disclose a variety of soliton solutions, including kinks, anti-kink, bell-shaped and periodic soliton. Some 3D graphs are plotted for visual representations of these solutions which highlight their adaptability. The results provide a basis for practical usage and expansions to related mathematical models or physical systems. They also expand our understanding of the NNVM's dynamics, providing insights into its behavior and prospective applications

    Painlev\'e property, local and nonlocal symmetries and symmetry reductions for a (2+1)-dimensional integrable KdV equation

    Full text link
    The Painlev\'e property for a (2+1)-dimensional Korteweg-de Vries (KdV) extension, the combined KP3 (Kadomtsev- Petviashvili) and KP4 (cKP3-4) is proved by using Kruskal's simplification. The truncated Painlev\'e expansion is used to find the Schwartz form, the B\"acklund/Levi transformations and the residual nonlocal symmetry. The residual symmetry is localized to find its finite B\"acklund transformation. The local point symmetries of the model constitute a centerless Kac-Moody-Virasoro algebra. The local point symmetries are used to find the related group invariant reductions including a new Lax integrable model with a fourth order spectral problem. The finite transformation theorem or the Lie point symmetry group is obtained by using a direct method.Comment: 9 page

    New coherent structures of the Vakhnenko–Parkes equation

    Get PDF
    AbstractA variable separation solution with two arbitrary functions is obtained for the Vakhnenko–Parkes equation. New coherent structures such as the soliton-type, instanton-type and rogue wave-type structures are presented

    Integrability, rational solitons and symmetries for nonlinear systems in Biology and Materials Physics

    Get PDF
    [ES] Los sistemas no lineales constituyen un tema de investigación de creciente interés en las últimas décadas dada su versatilidad en la descripción de fenómenos físicos en diversos campos de estudio. Generalmente, dichos fenómenos vienen modelizados por ecuaciones diferenciales no lineales, cuya estructura matemática ha demostrado ser sumamente rica, aunque de gran complejidad respecto a su análisis. Dentro del conjunto de los sistemas no lineales, cabe destacar un reducido grupo, pero a la vez selecto, que se distingue por las propiedades extraordinarias que presenta: los denominados sistemas integrables. La presente tesis doctoral se centra en el estudio de algunas de las propiedades más relevantes observadas para los sistemas integrables. En esta tesis se pretende proporcionar un marco teórico unificado que permita abordar ecuaciones diferenciales no lineales que potencialmente puedan ser consideradas como integrables. En particular, el análisis de integralidad de dichas ecuaciones se realiza a través de técnicas basadas en la Propiedad de Painlevé, en combinación con la subsiguiente búsqueda de los problemas espectrales asociados y la identificación de soluciones analíticas de naturaleza solitónica. El método de la variedad singular junto con las transformaciones de auto-Bäcklund y de Darboux jugarán un papel fundamental en este estudio. Además, también se lleva a cabo un análisis complementario basado en las simetrías de Lie y reducciones de similaridad, que nos permitirán estudiar desde esta nueva perspectiva los problemas espectrales asociados. Partiendo de la archiconocida ecuación de Schrödinger no lineal, se han investigado diferentes generalizaciones integrables de dicha ecuación con numerosas aplicaciones en diversos campos científicos, como la Física Matemática, Física de Materiales o Biología.[EN] Nonlinear systems emerge as an active research topic of growing interest during the last decades due to their versatility when it comes to describing physical phenomena. Such scenarios are typically modelled by nonlinear differential equations, whose mathematical structure has proved to be incredibly rich, but highly nontrivial to treat. In particular, a narrow but surprisingly special group of this kind stands out: the so-called integrable systems. The present doctoral thesis focuses on the study of some of the extraordinary properties observed for integrable systems. The ultimate purpose of this dissertation lies in providing a unified theoretical framework that allows us to approach nonlinear differential equations that may potentially be considered as integrable. In particular, their integrability characterization is addressed by means of Painlevé analysis, in conjunction with the subsequent quest of the associated spectral problems and the identification of analytical solutions of solitonic nature. The singular manifold method together with auto-Bäckund and Darboux transformations play a critical role in this setting. In addition, a complementary methodology based on Lie symmetries and similarity reductions is proposed so as to analyze integrable systems by studying the symmetry properties of their associated spectral problems. Taking the ubiquitous nonlinear Schrödinger equation as the starting point, we have investigated several integrable generalizations of this equation that possess copious applications in distinct scientific fields, such as Mathematical Physics, Material Sciences and Biology
    corecore