5,695 research outputs found

    Lie symmetries and exact solutions for a fourth-order nonlinear diffusion equation

    Get PDF
    In this paper, we consider a fourth-order nonlinear diffusion partial differential equation, depending on two arbitrary functions. First, we perform an analysis of the symmetry reductions for this parabolic partial differential equation by applying the Lie symmetry method. The invariance property of a partial differential equation under a Lie group of transformations yields the infinitesimal generators. By using this invariance condition, we present a complete classification of the Lie point symmetries for the different forms of the functions that the partial differential equation involves. Afterwards, the optimal systems of one-dimensional subalgebras for each maximal Lie algebra are determined, by computing previously the commutation relations, with the Lie bracket operator, and the adjoint representation. Next, the reductions to ordinary differential equations are derived from the optimal systems of one-dimensional subalgebras. Furthermore, we study travelling wave reductions depending on the form of the two arbitrary functions of the original equation. Some travelling wave solutions are obtained, such as solitons, kinks and periodic waves

    Evaluating the Evans function: Order reduction in numerical methods

    Full text link
    We consider the numerical evaluation of the Evans function, a Wronskian-like determinant that arises in the study of the stability of travelling waves. Constructing the Evans function involves matching the solutions of a linear ordinary differential equation depending on the spectral parameter. The problem becomes stiff as the spectral parameter grows. Consequently, the Gauss--Legendre method has previously been used for such problems; however more recently, methods based on the Magnus expansion have been proposed. Here we extensively examine the stiff regime for a general scalar Schr\"odinger operator. We show that although the fourth-order Magnus method suffers from order reduction, a fortunate cancellation when computing the Evans matching function means that fourth-order convergence in the end result is preserved. The Gauss--Legendre method does not suffer from order reduction, but it does not experience the cancellation either, and thus it has the same order of convergence in the end result. Finally we discuss the relative merits of both methods as spectral tools.Comment: 21 pages, 3 figures; removed superfluous material (+/- 1 page), added paragraph to conclusion and two reference

    Takens-Bogdanov bifurcation of travelling wave solutions in pipe flow

    Get PDF
    The appearance of travelling-wave-type solutions in pipe Poiseuille flow that are disconnected from the basic parabolic profile is numerically studied in detail. We focus on solutions in the 2-fold azimuthally-periodic subspace because of their special stability properties, but relate our findings to other solutions as well. Using time-stepping, an adapted Krylov-Newton method and Arnoldi iteration for the computation and stability analysis of relative equilibria, and a robust pseudo-arclength continuation scheme we unfold a double-zero (Takens-Bogdanov) bifurcating scenario as a function of Reynolds number (Re) and wavenumber (k). This scenario is extended, by the inclusion of higher order terms in the normal form, to account for the appearance of supercritical modulated waves emanating from the upper branch of solutions at a degenerate Hopf bifurcation. These waves are expected to disappear in saddle-loop bifurcations upon collision with lower-branch solutions, thereby leaving stable upper-branch solutions whose subsequent secondary bifurcations could contribute to the formation of the phase space structures that are required for turbulent dynamics at higher Re.Comment: 26 pages, 15 figures (pdf and png). Submitted to J. Fluid Mec

    Thermoelasticity and generalized thermoelasticity viewed as wave hierarchies

    Get PDF
    It is seen how to write the standard\^E form of the four partial differential equations in four unknowns of anisotropic thermoelasticity as a single equation in one variable, in terms of isothermal and isentropic wave operators. This equation, of diffusive type, is of the eighth order in the space derivatives and seventh order in the time derivatives and so is parabolic in character. After having seen how to cast the 1D diffusion equation into Whitham's wave hierarchy form it is seen how to recast the full equation, for uni-directional motion, in wave hierarchy form. The higher order waves are isothermal and the lower order waves are isentropic or purely diffusive. The wave hierarchy form is then used to derive the main features of the solution of the initial value problem, thereby bypassing the need for an asymptotic analysis of the integral form of the exact solution. The results are specialized to the isotropic case. The theory of generalized thermoelasticity associates a relaxation time with the heat flux vector and the resulting system of equations is hyperbolic in character. It is seen also how to write this system in wave hierarchy form which is again used to derive the main features of the solution of the initial value problem. Simpler results are obtained in the isotropic case.Comment: 16 page

    A non-linear degenerate equation for direct aggregation and traveling wave dynamics

    Get PDF
    The gregarious behavior of individuals of populations is an important factor in avoiding predators or for reproduction. Here, by using a random biased walk approach, we build a model which, after a transformation, takes the general form [u_{t}=[D(u)u_{x}]_{x}+g(u)] . The model involves a density-dependent non-linear diffusion coefficient [D] whose sign changes as the population density [u] increases. For negative values of [D] aggregation occurs, while dispersion occurs for positive values of [D] . We deal with a family of degenerate negative diffusion equations with logistic-like growth rate [g] . We study the one-dimensional traveling wave dynamics for these equations and illustrate our results with a couple of examples. A discussion of the ill-posedness of the partial differential equation problem is included
    corecore