7,153 research outputs found

    THE DUBINS TRAVELING SALESMAN PROBLEM WITH CONSTRAINED COLLECTING MANEUVERS

    Get PDF
    In this paper, we introduce a variant of the Dubins traveling salesman problem (DTSP) that is called the Dubins traveling salesman problem with constrained collecting maneuvers (DTSP-CM). In contrast to the ordinary formulation of the DTSP, in the proposed DTSP-CM, the vehicle is requested to visit each target by specified collecting maneuver to accomplish the mission. The proposed problem formulation is motivated by scenarios with unmanned aerial vehicles where particular maneuvers are necessary for accomplishing the mission, such as object dropping or data collection with sensor sensitive to changes in vehicle heading. We consider existing methods for the DTSP and propose its modifications to use these methods to address a variant of the introduced DTSP-CM, where the collecting maneuvers are constrained to straight line segments

    The Unreasonable Success of Local Search: Geometric Optimization

    Full text link
    What is the effectiveness of local search algorithms for geometric problems in the plane? We prove that local search with neighborhoods of magnitude 1/ϔc1/\epsilon^c is an approximation scheme for the following problems in the Euclidian plane: TSP with random inputs, Steiner tree with random inputs, facility location (with worst case inputs), and bicriteria kk-median (also with worst case inputs). The randomness assumption is necessary for TSP

    A hybrid heuristic solving the traveling salesman problem

    Get PDF
    This paper presents a new hybrid heuristic for solving the Traveling Salesman Problem, The algorithm is designed on the frame of a general optimization procedure which acts upon two steps, iteratively. In first step of the global search, a feasible tour is constructed based on insertion approach. In the second step the feasible tour found at the first step, is improved by a local search optimization procedure. The second part of the paper presents the performances of the proposed heuristic algorithm, on several test instances. The statistical analysis shows the effectiveness of the local search optimization procedure, in the graphical representation.peer-reviewe

    The Traveling Salesman Problem Under Squared Euclidean Distances

    Get PDF
    Let PP be a set of points in Rd\mathbb{R}^d, and let α≄1\alpha \ge 1 be a real number. We define the distance between two points p,q∈Pp,q\in P as ∣pq∣α|pq|^{\alpha}, where ∣pq∣|pq| denotes the standard Euclidean distance between pp and qq. We denote the traveling salesman problem under this distance function by TSP(d,αd,\alpha). We design a 5-approximation algorithm for TSP(2,2) and generalize this result to obtain an approximation factor of 3α−1+6α/33^{\alpha-1}+\sqrt{6}^{\alpha}/3 for d=2d=2 and all α≄2\alpha\ge2. We also study the variant Rev-TSP of the problem where the traveling salesman is allowed to revisit points. We present a polynomial-time approximation scheme for Rev-TSP(2,α)(2,\alpha) with α≄2\alpha\ge2, and we show that Rev-TSP(d,α)(d, \alpha) is APX-hard if d≄3d\ge3 and α>1\alpha>1. The APX-hardness proof carries over to TSP(d,α)(d, \alpha) for the same parameter ranges.Comment: 12 pages, 4 figures. (v2) Minor linguistic change

    Euclidean TSP with few inner points in linear space

    Full text link
    Given a set of nn points in the Euclidean plane, such that just kk points are strictly inside the convex hull of the whole set, we want to find the shortest tour visiting every point. The fastest known algorithm for the version when kk is significantly smaller than nn, i.e., when there are just few inner points, works in O(k11kk1.5n3)O(k^{11\sqrt{k}} k^{1.5} n^{3}) time [Knauer and Spillner, WG 2006], but also requires space of order kckn2k^{c\sqrt{k}}n^{2}. The best linear space algorithm takes O(k!kn)O(k! k n) time [Deineko, Hoffmann, Okamoto, Woeginer, Oper. Res. Lett. 34(1), 106-110]. We construct a linear space O(nk2+kO(k))O(nk^2+k^{O(\sqrt{k})}) time algorithm. The new insight is extending the known divide-and-conquer method based on planar separators with a matching-based argument to shrink the instance in every recursive call. This argument also shows that the problem admits a quadratic bikernel.Comment: under submissio

    An interacting replica approach applied to the traveling salesman problem

    Full text link
    We present a physics inspired heuristic method for solving combinatorial optimization problems. Our approach is specifically motivated by the desire to avoid trapping in metastable local minima- a common occurrence in hard problems with multiple extrema. Our method involves (i) coupling otherwise independent simulations of a system ("replicas") via geometrical distances as well as (ii) probabilistic inference applied to the solutions found by individual replicas. The {\it ensemble} of replicas evolves as to maximize the inter-replica correlation while simultaneously minimize the local intra-replica cost function (e.g., the total path length in the Traveling Salesman Problem within each replica). We demonstrate how our method improves the performance of rudimentary local optimization schemes long applied to the NP hard Traveling Salesman Problem. In particular, we apply our method to the well-known "kk-opt" algorithm and examine two particular cases- k=2k=2 and k=3k=3. With the aid of geometrical coupling alone, we are able to determine for the optimum tour length on systems up to 280280 cities (an order of magnitude larger than the largest systems typically solved by the bare k=3k=3 opt). The probabilistic replica-based inference approach improves k−optk-opt even further and determines the optimal solution of a problem with 318318 cities and find tours whose total length is close to that of the optimal solutions for other systems with a larger number of cities.Comment: To appear in SAI 2016 conference proceedings 12 pages,17 figure
    • 

    corecore