21,954 research outputs found

    Traveling salesman path problems

    Get PDF

    Asymmetric Traveling Salesman Path and Directed Latency Problems

    Full text link
    We study integrality gaps and approximability of two closely related problems on directed graphs. Given a set V of n nodes in an underlying asymmetric metric and two specified nodes s and t, both problems ask to find an s-t path visiting all other nodes. In the asymmetric traveling salesman path problem (ATSPP), the objective is to minimize the total cost of this path. In the directed latency problem, the objective is to minimize the sum of distances on this path from s to each node. Both of these problems are NP-hard. The best known approximation algorithms for ATSPP had ratio O(log n) until the very recent result that improves it to O(log n/ log log n). However, only a bound of O(sqrt(n)) for the integrality gap of its linear programming relaxation has been known. For directed latency, the best previously known approximation algorithm has a guarantee of O(n^(1/2+eps)), for any constant eps > 0. We present a new algorithm for the ATSPP problem that has an approximation ratio of O(log n), but whose analysis also bounds the integrality gap of the standard LP relaxation of ATSPP by the same factor. This solves an open problem posed by Chekuri and Pal [2007]. We then pursue a deeper study of this linear program and its variations, which leads to an algorithm for the k-person ATSPP (where k s-t paths of minimum total length are sought) and an O(log n)-approximation for the directed latency problem

    Traveling salesman path problems

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 2005.Includes bibliographical references (p. 153-155).In the Traveling Salesman Path Problem, we are given a set of cities, traveling costs between city pairs and fixed source and destination cities. The objective is to find a minimum cost path from the source to destination visiting all cities exactly once. The problem is a generalization of the Traveling Salesman Problem with many important applications. In this thesis, we study polyhedral and combinatorial properties of a variant we call the Traveling Salesman Walk Problem, in which the minimum cost walk from the source to destination visits all cities at least once. Using the approach of linear programming, we study properties of the polyhedron corresponding to a linear programming relaxation of the traveling salesman walk problem. Our results relate the structure of the underlying graph of the problem instance with polyhedral properties of the corresponding fractional walk polyhedron. We first characterize traveling salesman walk perfect graphs, graphs for which the convex hull of incidence vectors of traveling salesman walks can be described by linear inequalities. We show these graphs have a description by way of forbidden minors and also characterize them constructively.(cont.) We extend these results to relate the underlying graph structure to the integrality gap of the corresponding fractional walk polyhedron. We present several graph operations which preserve integrality gap; these operations allow us to find the integrality gap of graphs built from smaller bricks, whose integrality gaps can be found by computational or other methods.by Fumei Lam.Ph.D

    Approximation Algorithms for Traveling Salesman Problems

    Get PDF
    The traveling salesman problem is the probably most famous problem in combinatorial optimization. Given a graph G and nonnegative edge costs, we want to find a closed walk in G that visits every vertex at least once and has minimum cost. We consider both the symmetric traveling salesman problem (TSP) where G is an undirected graph and the asymmetric traveling salesman problem (ATSP) where G is a directed graph. We also investigate the unit-weight special cases and the more general path versions, where we do not require the walk to be closed, but to start and end in prescribed vertices s and t. In this thesis we give improved approximation algorithms and better upper bounds on the integrality ratio of the classical linear programming relaxations for several of these traveling salesman problems. For this we use techniques arising from various parts of combinatorial optimization such as linear programming, network flows, ear-decompositions, matroids, and T-joins. Our results include a (22 + &epsilon)-approximation algorithm for ATSP (for any &epsilon > 0), the first constant upper bound on the integrality ratio for s-t-path ATSP, a new upper bound on the integrality ratio for s-t-path TSP, and a black-box reduction from s-t-path TSP to TSP

    Probabilistic Analysis of Optimization Problems on Generalized Random Shortest Path Metrics

    Get PDF
    Simple heuristics often show a remarkable performance in practice for optimization problems. Worst-case analysis often falls short of explaining this performance. Because of this, "beyond worst-case analysis" of algorithms has recently gained a lot of attention, including probabilistic analysis of algorithms. The instances of many optimization problems are essentially a discrete metric space. Probabilistic analysis for such metric optimization problems has nevertheless mostly been conducted on instances drawn from Euclidean space, which provides a structure that is usually heavily exploited in the analysis. However, most instances from practice are not Euclidean. Little work has been done on metric instances drawn from other, more realistic, distributions. Some initial results have been obtained by Bringmann et al. (Algorithmica, 2013), who have used random shortest path metrics on complete graphs to analyze heuristics. The goal of this paper is to generalize these findings to non-complete graphs, especially Erd\H{o}s-R\'enyi random graphs. A random shortest path metric is constructed by drawing independent random edge weights for each edge in the graph and setting the distance between every pair of vertices to the length of a shortest path between them with respect to the drawn weights. For such instances, we prove that the greedy heuristic for the minimum distance maximum matching problem, the nearest neighbor and insertion heuristics for the traveling salesman problem, and a trivial heuristic for the kk-median problem all achieve a constant expected approximation ratio. Additionally, we show a polynomial upper bound for the expected number of iterations of the 2-opt heuristic for the traveling salesman problem.Comment: An extended abstract appeared in the proceedings of WALCOM 201

    An interacting replica approach applied to the traveling salesman problem

    Full text link
    We present a physics inspired heuristic method for solving combinatorial optimization problems. Our approach is specifically motivated by the desire to avoid trapping in metastable local minima- a common occurrence in hard problems with multiple extrema. Our method involves (i) coupling otherwise independent simulations of a system ("replicas") via geometrical distances as well as (ii) probabilistic inference applied to the solutions found by individual replicas. The {\it ensemble} of replicas evolves as to maximize the inter-replica correlation while simultaneously minimize the local intra-replica cost function (e.g., the total path length in the Traveling Salesman Problem within each replica). We demonstrate how our method improves the performance of rudimentary local optimization schemes long applied to the NP hard Traveling Salesman Problem. In particular, we apply our method to the well-known "kk-opt" algorithm and examine two particular cases- k=2k=2 and k=3k=3. With the aid of geometrical coupling alone, we are able to determine for the optimum tour length on systems up to 280280 cities (an order of magnitude larger than the largest systems typically solved by the bare k=3k=3 opt). The probabilistic replica-based inference approach improves k−optk-opt even further and determines the optimal solution of a problem with 318318 cities and find tours whose total length is close to that of the optimal solutions for other systems with a larger number of cities.Comment: To appear in SAI 2016 conference proceedings 12 pages,17 figure
    • …
    corecore