1,046 research outputs found

    Estratégias de controle de trajetórias para cadeira de rodas robotizadas

    Get PDF
    Orientador: Eleri CardozoDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de ComputaçãoResumo: Desde os anos 80, diversos trabalhos foram publicados com o objetivo de propor soluções alternativas para usuários de cadeira de rodas motorizadas com severa deficiência motora e que não possuam capacidade de operar um joystick mecânico. Dentre essas soluções estão interfaces assistivas que auxiliam no comando da cadeira de rodas através de diversos mecanismos como expressões faciais, interfaces cérebro-computador, e rastreamento de olho. Além disso, as cadeiras de rodas ganharam certa autonomia para realizar determinadas tarefas que vão de desviar de obstáculos, abrir portas e até planejar e executar rotas. Para que estas tarefas possam ser executadas, é necessário que as cadeiras de rodas tenham estruturas não convencionais, habilidade de sensoriamento do ambiente e estratégias de controle de locomoção. O objetivo principal é disponibilizar uma cadeira de rodas que ofereça conforto ao usuário e que possua um condução segura não importando o tipo de deficiência do usuário. Entretanto, durante a condução da cadeira de rodas, o desalinhamento das rodas castores podem oferecer certo perigo ao usuário, uma vez que, dependendo da maneira em que elas estejam orientadas, instabilidades podem ocorrer, culminando em acidentes. Da mesma forma, o desalinhamento das rodas castores é considerado um dos principais causadores de desvios de trajetória que ocorrem durante a movimentação da cadeira de rodas, juntamente com diferentes distribuições de pesos ou diferentes atritos entre as rodas e o chão. Nesta dissertação, é considerado apenas o desalinhamento das rodas castores como único causador de desvio de trajetória da cadeira de rodas e, dessa forma, são propostas soluções que possam reduzir ou até mesmo eliminar o efeito deste desalinhamento. Com a implementação das melhores soluções desenvolvidas neste trabalho, é possível fazer com que diversas interfaces assistivas que têm baixa taxa de comandos possam ser utilizadas, uma vez que o usuário não precisa, constantemente, corrigir o desvio da trajetória desejada. Ademais, é elaborado um novo projeto de cadeira de rodas "inteligente" para a implementação das técnicas desenvolvidas neste trabalhoAbstract: Since the 1980s several works were published proposing alternative solutions for users of powered wheelchairs with severe mobility impairments and that are not able to operate a mechanical joystick. Such solutions commonly focus on assistive interfaces that help commanding the wheelchair through distinct mechanisms such as facial expressions, brain-computer interfaces, and eye tracking. Besides that, the wheelchairs have achieved a certain level of autonomy to accomplish determined tasks such as obstacle avoidance, doors opening and even path planning and execution. For these tasks to be performed, it is necessary the wheelchairs to have a non conventional designs, ability to sense the environment and locomotion control strategies. The ultimate objective is to offer a comfortable and safe conduction no matter the user's mobility impairments. However, while driving the wheelchair, the caster wheels' misalignment might offer risks to the user, because, depending on the way they are initially oriented, instabilities may occur causing accidents. Similarly, the caster wheels' misalignment can be considered, among others like different weight distribution or different friction between wheel and floor, one of the main causes of path deviation from the intended trajectory while the wheelchair is moving. In this dissertation, it is considered the caster wheels' misalignment as the unique generator of wheelchair path deviation and, therefore, it is proposed different solutions in order to reduce or even eliminate the effects of the misalignment. The implementation of the best solutions developed in this work allows assistive interfaces with low rate of commands to be widespread, once the user does not need to, constantly, correct path deviation. Additionally, a new smart wheelchair project is elaborated for the implementation of the techniques developed in this workMestradoEngenharia de ComputaçãoMestre em Engenharia Elétrica88882.329382/2019-01CAPE

    Developing Cost-Effective Robot Navigation

    Get PDF

    Sensor Fusion and Deep Learning for Indoor Agent Localization

    Get PDF
    Autonomous, self-navigating agents have been rising in popularity due to a push for a more technologically aided future. From cars to vacuum cleaners, the applications of self-navigating agents are vast and span many different fields and aspects of life. As the demand for these autonomous robotic agents has been increasing, so has the demand for innovative features, robust behavior, and lower cost hardware. One particular area with a constant demand for improvement is localization, or an agent\u27s ability to determine where it is located within its environment. Whether the agent\u27s environment is primarily indoor or outdoor, dense or sparse, static or dynamic, an agent must be able to have knowledge of its location. Many different techniques exist today for localization, each having its strengths and weaknesses. Despite the abundance of different techniques, there is still room for improvement. This research presents a novel indoor localization algorithm that fuses data from multiple sensors for a relatively low cost. Inspired by recent innovations in deep learning and particle filters, a fast, robust, and accurate autonomous localization system has been created. Results demonstrate that the proposed system is both real-time and robust against changing conditions within the environment

    A 4WD Omnidirectional Mobile Platform and its Application to Wheelchairs

    Get PDF

    Mechatronic Systems

    Get PDF
    Mechatronics, the synergistic blend of mechanics, electronics, and computer science, has evolved over the past twenty five years, leading to a novel stage of engineering design. By integrating the best design practices with the most advanced technologies, mechatronics aims at realizing high-quality products, guaranteeing at the same time a substantial reduction of time and costs of manufacturing. Mechatronic systems are manifold and range from machine components, motion generators, and power producing machines to more complex devices, such as robotic systems and transportation vehicles. With its twenty chapters, which collect contributions from many researchers worldwide, this book provides an excellent survey of recent work in the field of mechatronics with applications in various fields, like robotics, medical and assistive technology, human-machine interaction, unmanned vehicles, manufacturing, and education. We would like to thank all the authors who have invested a great deal of time to write such interesting chapters, which we are sure will be valuable to the readers. Chapters 1 to 6 deal with applications of mechatronics for the development of robotic systems. Medical and assistive technologies and human-machine interaction systems are the topic of chapters 7 to 13.Chapters 14 and 15 concern mechatronic systems for autonomous vehicles. Chapters 16-19 deal with mechatronics in manufacturing contexts. Chapter 20 concludes the book, describing a method for the installation of mechatronics education in schools

    Climbing and Walking Robots

    Get PDF
    Nowadays robotics is one of the most dynamic fields of scientific researches. The shift of robotics researches from manufacturing to services applications is clear. During the last decades interest in studying climbing and walking robots has been increased. This increasing interest has been in many areas that most important ones of them are: mechanics, electronics, medical engineering, cybernetics, controls, and computers. Today’s climbing and walking robots are a combination of manipulative, perceptive, communicative, and cognitive abilities and they are capable of performing many tasks in industrial and non- industrial environments. Surveillance, planetary exploration, emergence rescue operations, reconnaissance, petrochemical applications, construction, entertainment, personal services, intervention in severe environments, transportation, medical and etc are some applications from a very diverse application fields of climbing and walking robots. By great progress in this area of robotics it is anticipated that next generation climbing and walking robots will enhance lives and will change the way the human works, thinks and makes decisions. This book presents the state of the art achievments, recent developments, applications and future challenges of climbing and walking robots. These are presented in 24 chapters by authors throughtot the world The book serves as a reference especially for the researchers who are interested in mobile robots. It also is useful for industrial engineers and graduate students in advanced study

    Analysis of the ANSI/RESNA Wheelchair Standards: A Comparison Study of Five Different Types of Electric Powered Wheelchairs

    Get PDF
    The number of individuals using electric powered wheelchairs (EPWs) is increasing every year. Advances in technology have led to the design of EPWs that are more complex and can perform multiple functions. The ANSI/RESNA wheelchair standards consist of a battery of tests that are designed to evaluate the safety and performance of both manual and power wheelchairs. However, there is a deficit of information available to the general public on the performance of wheelchairs on these tests. The purpose of this study was to compare the results of standards testing on five different types of EPWs. The value and intentions of each section of the standard were also reviewed and suggestions were made for possible improvements. A total of fifteen EPWs (three of each type) were tested using the following sections: static stability, dynamic stability, effectiveness of brakes, energy consumption, overall dimensions, speed and acceleration, seating dimensions, static, impact, and fatigue testing, climatic testing, obstacle climbing ability, and power and control systems. Statistical analysis was performed on the relevant sections. Significant differences were found between the different types of wheelchairs with respect to static stability, dynamic stability, braking distance, theoretical range, and obstacle climbing ability. The EPWs with the highest velocity and accelerations were found to be the most dynamically unstable and have the longest braking distances. Dynamic stability and braking distance were also found to be directly related to the slope of the test surface. It is apparent from the results that EPWs can differ in both performance characteristics and safety. Evaluation of the wheelchair standards also illustrated the need to continually revise the standards to keep pace with new technology. Stability, fatigue strength, and control system testing are three of the sections that will need to be adapted to help evaluate the next generation of EPWs
    • …
    corecore