309 research outputs found

    Spatial-Temporal Feature Extraction and Evaluation Network for Citywide Traffic Condition Prediction

    Full text link
    Traffic prediction plays an important role in the realization of traffic control and scheduling tasks in intelligent transportation systems. With the diversification of data sources, reasonably using rich traffic data to model the complex spatial-temporal dependence and nonlinear characteristics in traffic flow are the key challenge for intelligent transportation system. In addition, clearly evaluating the importance of spatial-temporal features extracted from different data becomes a challenge. A Double Layer - Spatial Temporal Feature Extraction and Evaluation (DL-STFEE) model is proposed. The lower layer of DL-STFEE is spatial-temporal feature extraction layer. The spatial and temporal features in traffic data are extracted by multi-graph graph convolution and attention mechanism, and different combinations of spatial and temporal features are generated. The upper layer of DL-STFEE is the spatial-temporal feature evaluation layer. Through the attention score matrix generated by the high-dimensional self-attention mechanism, the spatial-temporal features combinations are fused and evaluated, so as to get the impact of different combinations on prediction effect. Three sets of experiments are performed on actual traffic datasets to show that DL-STFEE can effectively capture the spatial-temporal features and evaluate the importance of different spatial-temporal feature combinations.Comment: 39 pages, 14 figures, 5 table

    Traffic Prediction using Artificial Intelligence: Review of Recent Advances and Emerging Opportunities

    Full text link
    Traffic prediction plays a crucial role in alleviating traffic congestion which represents a critical problem globally, resulting in negative consequences such as lost hours of additional travel time and increased fuel consumption. Integrating emerging technologies into transportation systems provides opportunities for improving traffic prediction significantly and brings about new research problems. In order to lay the foundation for understanding the open research challenges in traffic prediction, this survey aims to provide a comprehensive overview of traffic prediction methodologies. Specifically, we focus on the recent advances and emerging research opportunities in Artificial Intelligence (AI)-based traffic prediction methods, due to their recent success and potential in traffic prediction, with an emphasis on multivariate traffic time series modeling. We first provide a list and explanation of the various data types and resources used in the literature. Next, the essential data preprocessing methods within the traffic prediction context are categorized, and the prediction methods and applications are subsequently summarized. Lastly, we present primary research challenges in traffic prediction and discuss some directions for future research.Comment: Published in Transportation Research Part C: Emerging Technologies (TR_C), Volume 145, 202

    Traffic Time Headway Prediction and Analysis: A Deep Learning Approach

    Get PDF
    In the modern world of Intelligent Transportation System (ITS), time headway is a key traffic flow parameter affecting ITS operations and planning. Defined as “the time difference between any two successive vehicles when they cross a given point”, time headway is used in various traffic and transportation engineering research domains, such as capacity analysis, safety studies, car-following, and lane-changing behavior modeling, and level of service evaluation describing stochastic features of traffic flow. Advanced travel and headway information can also help road users avoid traffic congestion through dynamic route planning, for instance. Hence, it is crucial to accurately model headway distribution patterns for the purpose of analyzing traffic operations and making subsequent infrastructure-related decisions. Previous studies have applied a variety of probabilistic models, machine learning algorithms (for example, support vector machine, relevance vector machine, etc.), and neural networks for short-term headway prediction. Recently, deep learning has become increasingly popular following a surge of traffic big data with high resolution, thriving algorithms, and evolved computational capacity. However, only a few studies have exploited this emerging technology for headway prediction applications. This is largely due to the difficulty in capturing the random, seasonal, nonlinear, and spatiotemporal correlated nature of traffic data and asymmetric human driving behavior which has a significant impact on headway. This study employs a novel architecture of deep neural networks, Long Short-Term Neural Network (LSTM NN), to capture nonlinear traffic dynamics effectively to predict vehicle headway. LSTM NN can overcome the issue of back-propagated error decay (that is, vanishing gradient problem) existing in regular Recurrent Neural Network (RNN) through memory blocks which is its special feature, and thus exhibits superior capability for time series prediction with long temporal dependency. There is no existing appropriate model for long term prediction of traffic headway, as existing models lack using big dataset and solving the vanishing gradient problem because of not having a memory block. To overcome these critics and fill the gaps in previous works, multiple LSTM layers are stacked to incorporate temporal information. For model training and validation, this study used the USDOT’s Next Generation Simulation (NGSIM) dataset, which contains historical data of some important features to describe the headway distribution such as lane numbers, microscopic traffic flow parameters, vehicle and road shape, vehicle type, and velocity. LSTM NN can capture the historical relationships between these variables and save them using its unique memory block. At the headway prediction stage, the related spatiotemporal features from the dataset (HighwayI-80) were fed into a fully connected layer and again tested with testing data for validation (both highway I-80 & US 101). The predicted accuracy outperforms previous time headway predictions

    Graph Neural Network for spatiotemporal data: methods and applications

    Full text link
    In the era of big data, there has been a surge in the availability of data containing rich spatial and temporal information, offering valuable insights into dynamic systems and processes for applications such as weather forecasting, natural disaster management, intelligent transport systems, and precision agriculture. Graph neural networks (GNNs) have emerged as a powerful tool for modeling and understanding data with dependencies to each other such as spatial and temporal dependencies. There is a large amount of existing work that focuses on addressing the complex spatial and temporal dependencies in spatiotemporal data using GNNs. However, the strong interdisciplinary nature of spatiotemporal data has created numerous GNNs variants specifically designed for distinct application domains. Although the techniques are generally applicable across various domains, cross-referencing these methods remains essential yet challenging due to the absence of a comprehensive literature review on GNNs for spatiotemporal data. This article aims to provide a systematic and comprehensive overview of the technologies and applications of GNNs in the spatiotemporal domain. First, the ways of constructing graphs from spatiotemporal data are summarized to help domain experts understand how to generate graphs from various types of spatiotemporal data. Then, a systematic categorization and summary of existing spatiotemporal GNNs are presented to enable domain experts to identify suitable techniques and to support model developers in advancing their research. Moreover, a comprehensive overview of significant applications in the spatiotemporal domain is offered to introduce a broader range of applications to model developers and domain experts, assisting them in exploring potential research topics and enhancing the impact of their work. Finally, open challenges and future directions are discussed

    Graph convolutional LSTM model for traffic delay prediction with uncertainty

    Get PDF
    Traffic flow in an urban environment exhibits a complex spatio-temporal in- teraction. The propogation of traffic flow through a transportation network depends on a number of factors, including the structure of the network and the time of day. Current analysis of this data by road controlling authorities is of- ten simplified and lacks a detailed understanding of how traffic moves through the network. A deep learning model which models both the spatial and tempo- ral interactions present in the data is able to capture complex patterns present in the data and allows for a more detailed understanding of traffic flow. A GC- LSTM model is explored for Hamilton City to predict traffic delay. It is found to have improved prediction accuracy over a standard LSTM by incorporating the spatial structure of the Hamilton road network. Additionally, Bayesian layers are integrated into the model to obtain a probability distribution over each prediction. By quantifying the uncertainty over each prediction, the de- cision making process based on the analysis can be carried out with a higher degree of confidence than a single point prediction from the model

    Short-term prediction of demand for ride-hailing services: a deep learning approach

    Get PDF
    As ride-hailing services become increasingly popular, being able to accurately predict demand for such services can help operators efficiently allocate drivers to customers, and reduce idle time, improve traffic congestion, and enhance the passenger experience. This paper proposes UBERNET, a deep learning convolutional neural network for short-time prediction of demand for ride-hailing services. Exploiting traditional time series approaches for this problem is challenging due to strong surges and declines in pickups, as well as spatial concentrations of demand. This leads to pickup patterns that are unevenly distributed over time and space. UBERNET employs a multivariate framework that utilises a number of temporal and spatial features that have been found in the literature to explain demand for ride-hailing services. Specifically, the proposed model includes two sub-networks that aim to encode the source series of various features and decode the predicting series, respectively. To assess the performance and effectiveness of UBERNET, we use 9 months of Uber pickup data in 2014 and 28 spatial and temporal features from New York City. We use a number of features suggested by the transport operations and travel behaviour research areas as being relevant to passenger demand prediction, e.g., weather, temporal factors, socioeconomic and demographics characteristics, as well as travel-to-work, built environment and social factors such as crime level, within a multivariate framework, that leads to operational and policy insights for multiple communities: the ride-hailing operator, passengers, third-part location-based service providers and revenue opportunities to drivers, and transport operators such as road traffic authorities, and public transport agencies. By comparing the performance of UBERNET with several other approaches, we show that the prediction quality of the model is highly competitive. Further, UBERNET’s prediction performance is better when using economic, social and built environment features. This suggests that UBERNET is more naturally suited to including complex motivators of travel behavior in making real-time demand predictions for ride-hailing services
    corecore