307 research outputs found

    Altered Emotional Interference Processing in the Amygdala and Insula in Women with Post-Traumatic Stress Disorder

    Get PDF
    Background: Post-Traumatic Stress Disorder (PTSD) is characterized by distinct behavioral and physiological changes. Given the significant impairments related to PTSD, examination of the biological underpinnings is crucial to the development of theoretical models and improved treatments of PTSD. Methods: We used an attentional interference task using emotional distracters to test for top-down versus bottom-up dysfunction in the interaction of cognitive-control circuitry and emotion-processing circuitry. A total of 32 women with PTSD (based on an interpersonal trauma) and 21 matched controls were tested. Event-related functional magnetic resonance imaging was carried out as participants directly attended to, or attempted to ignore, fear-related stimuli. Results: Compared to controls, patients with PTSD showed hyperactivity in several brain regions, including the amygdala, insula, as well as dorsal lateral and ventral PFC regions. Conclusions: These results are consistent with previous studies that have higher amygdala and insular activation in PTSD subjects. However, inhibition of suppression of PFC regions is inconsistent with the fear circuitry model hypothesized by prior research. We suggest that the specific emotional conflict task used appears to target implicit or automatic emotional regulation instead of explicit or effortful emotional regulation. This is particularly relevant as it posited that emotional regulatory difficulties in anxiety disorders such as PTSD appear to occur in implicit forms of emotion regulation

    Traumatic Experiences Disrupt Amygdala – Prefrontal Connectivity

    Get PDF

    Altered Amygdala Resting-State Functional Connectivity in Post-Traumatic Stress Disorder

    Get PDF
    Post-traumatic stress disorder (PTSD) is often characterized by aberrant amygdala activation and functional abnormalities in corticolimbic circuitry, as elucidated by functional neuroimaging. These “activation” studies have primarily relied on tasks designed to induce region-specific, and task-dependent brain responses in limbic (e.g., amygdala) and paralimbic brain areas through the use of aversive evocative probes. It remains unknown if these corticolimbic circuit abnormalities exist at baseline or “at rest,” in the absence of fear/anxiety-related provocation and outside the context of task demands. Therefore the primary aim of the present experiment was to investigate aberrant amygdala functional connectivity patterns in combat-related PTSD patients during resting-state. Seventeen Operation Enduring Freedom/Operation Iraqi Freedom (OEF/OIF) veterans with combat-related PTSD (PTSD group) and 17 combat-exposed OEF/OIF veterans without PTSD [combat-exposed control (CEC) group] underwent an 8-min resting-state functional magnetic resonance imaging scan. Using an anatomically derived amygdala “seed” region we observed stronger functional coupling between the amygdala and insula in the PTSD group compared to the CEC group, but did not find group differences in amygdala–prefrontal connectivity. These findings suggest that the aberrant amygdala and insula activation to fear-evocative probes previously characterized in PTSD may be driven by an underlying enhanced connectivity between the amygdala, a region known for perceiving threat and generating fear responses, and the insula, a region known for processing the meaning and prediction of aversive bodily states. This enhanced amygdala–insula connectivity may reflect an exaggerated, pervasive state of arousal that exists outside the presence of an overt actual threat/danger. Studying amygdala functional connectivity “at rest” extends our understanding of the pathophysiology of PTSD

    Serotonin transporter gene polymorphisms and brain function during emotional distraction from cognitive processing in posttraumatic stress disorder

    Get PDF
    BACKGROUND: Serotonergic system dysfunction has been implicated in posttraumatic stress disorder (PTSD). Genetic polymorphisms associated with serotonin signaling may predict differences in brain circuitry involved in emotion processing and deficits associated with PTSD. In healthy individuals, common functional polymorphisms in the serotonin transporter gene (SLC6A4) have been shown to modulate amygdala and prefrontal cortex (PFC) activity in response to salient emotional stimuli. Similar patterns of differential neural responses to emotional stimuli have been demonstrated in PTSD but genetic factors influencing these activations have yet to be examined. METHODS: We investigated whether SLC6A4 promoter polymorphisms (5-HTTLPR, rs25531) and several downstream single nucleotide polymorphisms (SNPs) modulated activity of brain regions involved in the cognitive control of emotion in post-9/11 veterans with PTSD. We used functional MRI to examine neural activity in a PTSD group (n = 22) and a trauma-exposed control group (n = 20) in response to trauma-related images presented as task-irrelevant distractors during the active maintenance period of a delayed-response working memory task. Regions of interest were derived by contrasting activation for the most distracting and least distracting conditions across participants. RESULTS: In patients with PTSD, when compared to trauma-exposed controls, rs16965628 (associated with serotonin transporter gene expression) modulated task-related ventrolateral PFC activation and 5-HTTLPR tended to modulate left amygdala activation. Subsequent to combat-related trauma, these SLC6A4 polymorphisms may bias serotonin signaling and the neural circuitry mediating cognitive control of emotion in patients with PTSD. CONCLUSIONS: The SLC6A4 SNP rs16965628 and 5-HTTLPR are associated with a bias in neural responses to traumatic reminders and cognitive control of emotions in patients with PTSD. Functional MRI may help identify intermediate phenotypes and dimensions of PTSD that clarify the functional link between genes and disease phenotype, and also highlight features of PTSD that show more proximal influence of susceptibility genes compared to current clinical categorizations

    Revisiting the Role of the Amygdala in Posttraumatic Stress Disorder

    Get PDF
    Over the past 20 years, the reactivity of amygdala to emotive stimuli has been explored by emerging neuroimaging techniques in an effort to understand the role of amygdala in the pathophysiology of posttraumatic stress disorder (PTSD). A fear neurocircuitry model, whereby the amygdala is hyperactive due to poor top-down control from the anterior cingulate and ventromedial prefrontal cortices, has been supported by numerous experimental studies and meta-analyses. However, this model has not always been upheld by experimental data and clinical observations. In particular, many neuroimaging studies find that the amygdala fails to activate in response to negative stimuli in individuals with PTSD. Several technical and design issues may explain disparate results regarding amygdala reactivity in PTSD. However, biological and symptom-based factors emerge as possible mediators of amygdala function in PTSD, leading to the conclusion that symptoms of emotional disengagement and dissociation are associated with amygdala hyporeactivity, and symptoms of hypervigilance/hyperarousal and problems with fear conditioning and extinction are reflected by amygdala hyperactivity. Therefore, treatment of PTSD should take into account the nature of amygdala dysfunction in the individual to optimize treatment outcomes

    Altered amygdala activation during face processing in Iraqi and Afghanistani war veterans

    Get PDF
    Abstract Background Exposure to combat can have a significant impact across a wide array of domains, and may manifest as post-traumatic stress disorder (PTSD), a debilitating mental illness that is associated with neural and affective sequelae. This study tested the hypothesis that combat-exposed individuals with and without PTSD, relative to healthy control subjects with no history of PTSD or combat exposure, would show amygdala hyperactivity during performance of a well-validated face processing task. We further hypothesized that differences in the prefrontal cortex would best differentiate the combat-exposed groups with and without PTSD. Methods Twelve men with PTSD related to combat in Operations Enduring Freedom and/or Iraqi Freedom, 12 male combat-exposed control patients with a history of Operations Enduring Freedom and/or Iraqi Freedom combat exposure but no history of PTSD, and 12 healthy control male patients with no history of combat exposure or PTSD completed a face-matching task during functional magnetic resonance imaging. Results The PTSD group showed greater amygdala activation to fearful versus happy faces than both the combat-exposed control and healthy control groups. Both the PTSD and the combat-exposed control groups showed greater amygdala activation to all faces versus shapes relative to the healthy control group. However, the combat-exposed control group relative to the PTSD group showed greater prefrontal/parietal connectivity with the amygdala, while the PTSD group showed greater connectivity with the subgenual cingulate. The strength of connectivity in the PTSD group was inversely related to avoidance scores. Conclusions These observations are consistent with the hypothesis that PTSD is associated with a deficiency in top-down modulation of amygdala activation by the prefrontal cortex and shows specific sensitivity to fearful faces

    Neural Correlates of Attention Bias in Posttraumatic Stress Disorder: A fMRI Study

    Get PDF
    Attention biases to trauma-related information contribute to symptom maintenance in Posttraumatic Stress Disorder (PTSD); this phenomenon has been observed through various behavioral studies, although findings from studies using a precise, direct bias task, the dot probe, have been mixed. PTSD neuroimaging studies have indicated atypical function in specific brain regions involved with attention bias; when viewing emotionally-salient cues or engaging in tasks that require attention, individuals with PTSD have demonstrated altered activity in brain regions implicated in cognitive control and attention allocation, including the medial prefrontal cortex (mPFC), dorsolateral prefrontal cortex (dlPFC) and amygdala. However, remarkably few PTSD neuroimaging studies have employed tasks that both measure attentional strategies being engaged and include emotionally-salient information. In the current study of attention biases in highly traumatized African-American adults, a version of the dot probe task that includes stimuli that are both salient (threatening facial expressions) and relevant (photographs of African-American faces) was administered to 19 participants with and without PTSD during functional magnetic resonance imaging (fMRI). I hypothesized that: 1) individuals with PTSD would show a significantly greater attention bias to threatening faces than traumatized controls; 2) PTSD symptoms would be associated with a significantly greater attentional bias toward threat expressed in African-American, but not Caucasian, faces; 3) PTSD symptoms would be significantly associated with abnormal activity in the mPFC, dlPFC, and amygdala during presentation of threatening faces. Behavioral data did not provide evidence of attentional biases associated with PTSD. However, increased activation in the dlPFC and regions of the mPFC in response to threat cues was found in individuals with PTSD, relative to traumatized controls without PTSD; this may reflect hyper-engaged cognitive control, attention, and conflict monitoring resources in these individuals. Additionally, viewing threat in same-race, both not other-race, faces was associated with increased activation in the mPFC. These findings have important theoretical and treatment implications, suggesting that PTSD, particularly in those individuals who have experienced chronic or multiple types of trauma, may be characterized less by top-down “deficits” or failures, but by imbalanced neurobiological and cognitive systems that become over-engaged in order to “control” the emotional disruption caused by trauma-related triggers

    PTSD, Neuroimaging and Psychotherapy: A Fruitful Encounter

    Get PDF

    Anterior cingulate activity to salient stimuli is modulated by autonomic arousal in posttraumatic stress disorder

    Get PDF
    Reduced ventral anterior cingulate (vACC) activity to threat is thought to reflect an impairment in regulating arousal networks in posttraumatic stress disorder (PTSD). Concurrent functional magnetic resonance imaging (fMRI) and skin conductance response (SCR) recording were used to examine neural functioning when arousal networks are engaged. Eleven participants with PTSD and 11 age-and sex-matched non-traumatized controls performed an oddball task that required responding to salient, non-trauma-related auditory target tones embedded in lower frequency background tones. Averaged target-background analyses revealed significantly greater dorsal ACC, supramarginal gyrus, and hippocampal activity in PTSD relative to control participants.With-SCR target responses resulted in increased vACC activity in controls, and dorsal ACC activity in PTSD. PTSD participants had reduced vACC activity relative to controls to target tones when SCR responses were present. This reduction in vACC in PTSD relative to controls was not apparent in without-SCR responses. These findings suggest that a reduction in vACC in PTSD occurs specifically when arousal networks are engaged
    corecore