2,293 research outputs found

    A Smart Management System For Garbage Classification Using Deep Learning

    Get PDF
    Thanks to the development of artificial intelligence (AI), the outdated trash system now offers better time monitoring and enables for better waste management. The purpose of this paper is to develop a smart sterile management system using a Tensor Flow-based deep learning model. In real time, it recognizes and categorizes items. Metal, plastic, and paper waste are separated from other sorts of trash in the bin's several divisions. Object detection and garbage classification are carried out using the Tensor Flow framework and a trained object recognition model. In order to create a frozen inference graph that can be used to recognize things using a camera, this trash detection model is trained on garbage photographs

    Modernized Management of Biomedical Waste Assisted with Artificial Intelligence

    Get PDF
    Biomedical waste can lead to severe environmental pollution and pose public health risks if not properly handled or disposed of. The efficient management of biomedical waste poses a significant challenge to healthcare facilities, environmental agencies, and regulatory bodies. Traditional management methods often fall short of efficient handling of biomedical waste due to its enormous quantity, diverse, and complex nature. In recent years, different approaches employing Artificial Intelligence (AI) techniques have been introduced and have shown promising potential in biomedical waste management. Wireless detection and IoT methods have enabled the monitoring of waste bins, predictions for the amount of waste, and optimization of the performance of waste processing facilities. This review paper aims to explore the application of AI through machine learning and deep learning models in optimizing the collection, segregation, transportation, disposal, and monitoring processes, which leads to improved resource allocation with risk mitigation of biomedical waste along with prediction, and decision-making using AI algorithms

    Image Processing Using Morphology on Support Vector Machine Classification Model for Waste Image

    Get PDF
    Sorting waste has always been an important part of managing waste. The primary issue with the waste sorting process has been the discomfort caused by prolonged contact with waste odor. A machinelearning method for identifying waste types was created to address this issue. The study’s goal was to create machine learning to solve waste management challenges by applying the most accurate categorization model available. The research approach was the quantitative analysis of the classification model accuracy. The Kaggle dataset was used to collect and curate data, which was subsequently preprocessed using the morphology approach. Based on picture sources, the data was trained and used to classify waste. The Support Vector Machine model was used in this investigation and feature extraction via the Convolutional Neural Network. The results showed that the system categorized waste successfully, with an accuracy of 99.30% and a loss of 2.47% across all categories. According to the findings of this study, SVM combined with morphological image processing functioned as a strong classification model, with a remarkable accuracy rate of 99.30%. This study’s outcomes contributed to waste management by giving an efficient and dependable waste classification solution compared to many previous studies

    Mobile application to identify recyclable materials

    Get PDF
    This dissertation proposes a system to help the consumer recycle efficiently. The system is composed by a mobile application that can capture images of waste and classify their category through the usage of a machine learning model. Furthermore, this application can communicate with a server to update the model with new improved versions and also upload the images to the server in order to contribute to the creation of more precise model versions. The system has been validated by a fully working prototype. Although the proof of concept has been achieved, with some types of waste items correctly categorized, the machine learning model produced is not precise enough to be used in real-life scenarios, that is, for any type of waste. The main contributions of this study are a compendium of information in the area of computer vision and machine learning to categorize waste, and a working prototype system that utilizes crowdsourcing and machine learning elements to help the consumer recycle more efficiently.Nesta dissertação é proposto um sistema para ajudar o consumidor a reciclar eficientemente. O sistema é composto por uma aplicação móvel que captura imagens de lixo e classifica a sua categoria usando um modelo de aprendizagem automática. Consegue também comunicar com um servidor para atualizar o modelo com versões melhoradas e enviar as imagens para o servidor para contribuir para a criação de modelos mais precisos. Foi demonstrado através de um protótipo totalmente funcional que o sistema proposto funciona. Algumas imagens de lixo foram categorizadas correctamente, mas o modelo de aprendizagem automática produzido durante este projeto não é preciso o suficiente, em qualquer categoria de lixo, para usar em cenários da vida real. As principais contribuições deste estudo são um compêndio de informação na área de visão de computador e aprendizagem automática para categorizar lixo, e um sistema protótipo funcional que utiliza elementos de contribuição colaborativa e aprendizagem automática para ajudar o consumidor a reciclar mais eficientemente

    Material Measurement Units: Foundations Through a Survey

    Full text link
    Long-term availability of minerals and industrial materials is a necessary condition for sustainable development as they are the constituents of any manufacturing product. In particular, technologies with increasing demand such as GPUs and photovoltaic panels are made of critical raw materials. To enhance the efficiency of material management, in this paper we make three main contributions: first, we identify in the literature an emerging computer-vision-enabled material monitoring technology which we call Material Measurement Unit (MMU); second, we provide a survey of works relevant to the development of MMUs; third, we describe a material stock monitoring sensor network deploying multiple MMUs.Comment: In preparation for submission to ACM Computing Survey

    Automated home waste segregation and management system

    Get PDF
    Waste management is a massive issue in India, most of the present systems cannot manage waste on a scalable level, thus creating pressure on the ecosystem. Before the elimination of waste, segregation needs to be done to manage individual types of waste. Hence taken the same approach to solving the problem, which most of the present-day systems fail to do. The goal is to segregate the garbage generated in individual households into solid, liquid, biodegradable, non-biodegradable, combustible, and non-combustible, using many subsystems that involve electro pneumatics, compression, and storage. Image processing techniques will further advocate the process. The desired system will further reduce the waste of an in-built pulverizer. After conducting in-depth research on the present solutions for the urban waste processing chain, the level of complexity increases as the waste goes further along the chain and, in the end, the only option left is incineration was figured out. The solution allows endpoints of the chain to process different types of garbage in a more organized fashion. Municipal solid waste (MSW) is solid waste that results from municipal community, commercial, institutional, and recreational activities. This paper aims to segregate the MSW generated by households into biodegradable, non-biodegradable, combustible, and non-combustible

    An Improved ResNet-50 for Garbage Image Classification

    Get PDF
    In order to solve the classification model\u27s shortcomings, this study suggests a new trash classification model that is generated by altering the structure of the ResNet-50 network. The improvement is divided into two sections. The first section is to change the residual block. To filter the input features, the attention module is inserted into the residual block. Simultaneously, the downsampling process in the residual block is changed to decrease information loss. The second section is multi-scale feature fusion. To optimize feature usage, horizontal and vertical multi-scale feature fusion is integrated to the primary network structure. Because of the filtering and reuse of image features, the enhanced model can achieve higher classification performance than existing models for small data sets with few samples. The experimental results show that the modified model outperforms the original ResNet-50 model on the TrashNet dataset by 7.62% and is more robust. In the meanwhile, our model is more accurate than other advanced methods

    Attitudes expressed in online comments about environmental factors in the tourism sector: an exploratory study

    Get PDF
    The object of this exploratory study is to identify the positive, neutral and negative environment factors that affect users who visit Spanish hotels in order to help the hotel managers decide how to improve the quality of the services provided. To carry out the research a Sentiment Analysis was initially performed, grouping the sample of tweets (n = 14459) according to the feelings shown and then a textual analysis was used to identify the key environment factors in these feelings using the qualitative analysis software Nvivo (QSR International, Melbourne, Australia). The results of the exploratory study present the key environment factors that affect the users experience when visiting hotels in Spain, such as actions that support local traditions and products, the maintenance of rural areas respecting the local environment and nature, or respecting air quality in the areas where hotels have facilities and offer services. The conclusions of the research can help hotels improve their services and the impact on the environment, as well as improving the visitors experience based on the positive, neutral and negative environment factors which the visitors themselves identified

    Influencing interaction: Development of the design with intent method

    Get PDF
    Persuasive Technology has the potential to influence user behavior for social benefit, e.g. to reduce environmental impact, but designers are lacking guidance choosing among design techniques for influencing interaction. The Design with Intent Method, a ‘suggestion tool’ addressing this problem, is introduced in this paper, and applied to the briefs of reducing unnecessary household lighting use, and improving the efficiency of printing, primarily to evaluate the method’s usability and guide the direction of its development. The trial demonstrates that the DwI Method is quick to apply and leads to a range of relevant design concepts. With development, the DwI Method could be a useful tool for designers working on influencing user behavior
    corecore