1,612 research outputs found

    Trapdoor commitment schemes and their applications

    Get PDF
    Informally, commitment schemes can be described by lockable steely boxes. In the commitment phase, the sender puts a message into the box, locks the box and hands it over to the receiver. On one hand, the receiver does not learn anything about the message. On the other hand, the sender cannot change the message in the box anymore. In the decommitment phase the sender gives the receiver the key, and the receiver then opens the box and retrieves the message. One application of such schemes are digital auctions where each participant places his secret bid into a box and submits it to the auctioneer. In this thesis we investigate trapdoor commitment schemes. Following the abstract viewpoint of lockable boxes, a trapdoor commitment is a box with a tiny secret door. If someone knows the secret door, then this person is still able to change the committed message in the box, even after the commitment phase. Such trapdoors turn out to be very useful for the design of secure cryptographic protocols involving commitment schemes. In the first part of the thesis, we formally introduce trapdoor commitments and extend the notion to identity-based trapdoors, where trapdoors can only be used in connection with certain identities. We then recall the most popular constructions of ordinary trapdoor protocols and present new solutions for identity-based trapdoors. In the second part of the thesis, we show the usefulness of trapdoors in commitment schemes. Deploying trapdoors we construct efficient non-malleable commitment schemes which basically guarantee indepency of commitments. Furthermore, applying (identity-based) trapdoor commitments we secure well-known identification protocols against a new kind of attack. And finally, by means of trapdoors, we show how to construct composable commitment schemes that can be securely executed as subprotocols within complex protocols

    Fully leakage-resilient signatures revisited: Graceful degradation, noisy leakage, and construction in the bounded-retrieval model

    Get PDF
    We construct new leakage-resilient signature schemes. Our schemes remain unforgeable against an adversary leaking arbitrary (yet bounded) information on the entire state of the signer (sometimes known as fully leakage resilience), including the random coin tosses of the signing algorithm. The main feature of our constructions is that they offer a graceful degradation of security in situations where standard existential unforgeability is impossible

    Chameleon: a Blind Double Trapdoor Hash Function for Securing AMI Data Aggregation

    Get PDF
    Data aggregation is an integral part of Advanced Metering Infrastructure (AMI) deployment that is implemented by the concentrator. Data aggregation reduces the number of transmissions, thereby reducing communication costs and increasing the bandwidth utilization of AMI. However, the concentrator poses a great risk of being tampered with, leading to erroneous bills and possible consumer disputes. In this paper, we propose an end-to-end integrity protocol using elliptic curve based chameleon hashing to provide data integrity and authenticity. The concentrator generates and sends a chameleon hash value of the aggregated readings to the Meter Data Management System (MDMS) for verification, while the smart meter with the trapdoor key computes and sends a commitment value to the MDMS so that the resulting chameleon hash value calculated by the MDMS is equivalent to the previous hash value sent by the concentrator. By comparing the two hash values, the MDMS can validate the integrity and authenticity of the data sent by the concentrator. Compared with the discrete logarithm implementation, the ECC implementation reduces the computational cost of MDMS, concentrator and smart meter by approximately 36.8%, 80%, and 99% respectively. We also demonstrate the security soundness of our protocol through informal security analysis

    URDP: General Framework for Direct CCA2 Security from any Lattice-Based PKE Scheme

    Full text link
    Design efficient lattice-based cryptosystem secure against adaptive chosen ciphertext attack (IND-CCA2) is a challenge problem. To the date, full CCA2-security of all proposed lattice-based PKE schemes achieved by using a generic transformations such as either strongly unforgeable one-time signature schemes (SU-OT-SS), or a message authentication code (MAC) and weak form of commitment. The drawback of these schemes is that encryption requires "separate encryption". Therefore, the resulting encryption scheme is not sufficiently efficient to be used in practice and it is inappropriate for many applications such as small ubiquitous computing devices with limited resources such as smart cards, active RFID tags, wireless sensor networks and other embedded devices. In this work, for the first time, we introduce an efficient universal random data padding (URDP) scheme, and show how it can be used to construct a "direct" CCA2-secure encryption scheme from "any" worst-case hardness problems in (ideal) lattice in the standard model, resolving a problem that has remained open till date. This novel approach is a "black-box" construction and leads to the elimination of separate encryption, as it avoids using general transformation from CPA-secure scheme to a CCA2-secure one. IND-CCA2 security of this scheme can be tightly reduced in the standard model to the assumption that the underlying primitive is an one-way trapdoor function.Comment: arXiv admin note: text overlap with arXiv:1302.0347, arXiv:1211.6984; and with arXiv:1205.5224 by other author

    Fiat-Shamir for highly sound protocols is instantiable

    Get PDF
    The Fiat–Shamir (FS) transformation (Fiat and Shamir, Crypto '86) is a popular paradigm for constructing very efficient non-interactive zero-knowledge (NIZK) arguments and signature schemes from a hash function and any three-move interactive protocol satisfying certain properties. Despite its wide-spread applicability both in theory and in practice, the known positive results for proving security of the FS paradigm are in the random oracle model only, i.e., they assume that the hash function is modeled as an external random function accessible to all parties. On the other hand, a sequence of negative results shows that for certain classes of interactive protocols, the FS transform cannot be instantiated in the standard model. We initiate the study of complementary positive results, namely, studying classes of interactive protocols where the FS transform does have standard-model instantiations. In particular, we show that for a class of “highly sound” protocols that we define, instantiating the FS transform via a q-wise independent hash function yields NIZK arguments and secure signature schemes. In the case of NIZK, we obtain a weaker “q-bounded” zero-knowledge flavor where the simulator works for all adversaries asking an a-priori bounded number of queries q; in the case of signatures, we obtain the weaker notion of random-message unforgeability against q-bounded random message attacks. Our main idea is that when the protocol is highly sound, then instead of using random-oracle programming, one can use complexity leveraging. The question is whether such highly sound protocols exist and if so, which protocols lie in this class. We answer this question in the affirmative in the common reference string (CRS) model and under strong assumptions. Namely, assuming indistinguishability obfuscation and puncturable pseudorandom functions we construct a compiler that transforms any 3-move interactive protocol with instance-independent commitments and simulators (a property satisfied by the Lapidot–Shamir protocol, Crypto '90) into a compiled protocol in the CRS model that is highly sound. We also present a second compiler, in order to be able to start from a larger class of protocols, which only requires instance-independent commitments (a property for example satisfied by the classical protocol for quadratic residuosity due to Blum, Crypto '81). For the second compiler we require dual-mode commitments. We hope that our work inspires more research on classes of (efficient) 3-move protocols where Fiat–Shamir is (efficiently) instantiable

    Chosen-ciphertext security from subset sum

    Get PDF
    We construct a public-key encryption (PKE) scheme whose security is polynomial-time equivalent to the hardness of the Subset Sum problem. Our scheme achieves the standard notion of indistinguishability against chosen-ciphertext attacks (IND-CCA) and can be used to encrypt messages of arbitrary polynomial length, improving upon a previous construction by Lyubashevsky, Palacio, and Segev (TCC 2010) which achieved only the weaker notion of semantic security (IND-CPA) and whose concrete security decreases with the length of the message being encrypted. At the core of our construction is a trapdoor technique which originates in the work of Micciancio and Peikert (Eurocrypt 2012

    On the Design of Cryptographic Primitives

    Full text link
    The main objective of this work is twofold. On the one hand, it gives a brief overview of the area of two-party cryptographic protocols. On the other hand, it proposes new schemes and guidelines for improving the practice of robust protocol design. In order to achieve such a double goal, a tour through the descriptions of the two main cryptographic primitives is carried out. Within this survey, some of the most representative algorithms based on the Theory of Finite Fields are provided and new general schemes and specific algorithms based on Graph Theory are proposed

    Computational Indistinguishability between Quantum States and Its Cryptographic Application

    Full text link
    We introduce a computational problem of distinguishing between two specific quantum states as a new cryptographic problem to design a quantum cryptographic scheme that is "secure" against any polynomial-time quantum adversary. Our problem, QSCDff, is to distinguish between two types of random coset states with a hidden permutation over the symmetric group of finite degree. This naturally generalizes the commonly-used distinction problem between two probability distributions in computational cryptography. As our major contribution, we show that QSCDff has three properties of cryptographic interest: (i) QSCDff has a trapdoor; (ii) the average-case hardness of QSCDff coincides with its worst-case hardness; and (iii) QSCDff is computationally at least as hard as the graph automorphism problem in the worst case. These cryptographic properties enable us to construct a quantum public-key cryptosystem, which is likely to withstand any chosen plaintext attack of a polynomial-time quantum adversary. We further discuss a generalization of QSCDff, called QSCDcyc, and introduce a multi-bit encryption scheme that relies on similar cryptographic properties of QSCDcyc.Comment: 24 pages, 2 figures. We improved presentation, and added more detail proofs and follow-up of recent wor
    • …
    corecore