7,012 research outputs found

    A Study of Local Minimum Avoidance Heuristics for SAT

    Get PDF
    Stochastic local search for satisfiability (SAT) has successfully been applied to solve a wide range of problems. However, it still suffers from a major shortcoming, i.e. being trapped in local minima. In this study, we explore different heuristics to avoid local minima. The main idea is to proactively avoid local minima rather than reactively escape from them. This is worthwhile because it is time consuming to successfully escape from a local minimum in a deep and wide valley. In addition, revisiting an encountered local minimum several times makes it worse. Our new trap avoidance heuristics that operate in two phases: (i) learning of pseudo-conflict information at each local minimum, and (ii) using this information to avoid revisiting the same local minimum. We present a detailed empirical study of different strategies to collect pseudo-conflict information (using either static or dynamic heuristics) as well as to forget the outdated information (using naive or time window smoothing). We select a benchmark suite that includes all random and structured instances used in the 2011 SAT competition and three sets of hardware and software verification problems. Our results show that the new heuristics significantly outperform existing stochastic local search solvers (including Sparrow2011 - the best local search solver for random instances in the 2011 SAT competition) on all tested benchmarks

    Adaptive path planning for fusing rapidly exploring random trees and deep reinforcement learning in an agriculture dynamic environment UAVs

    Get PDF
    Unmanned aerial vehicles (UAV) are a suitable solution for monitoring growing cultures due to the possibility of covering a large area and the necessity of periodic monitoring. In inspection and monitoring tasks, the UAV must find an optimal or near-optimal collision-free route given initial and target positions. In this sense, path-planning strategies are crucial, especially online path planning that can represent the robot’s operational environment or for control purposes. Therefore, this paper proposes an online adaptive path-planning solution based on the fusion of rapidly exploring random trees (RRT) and deep reinforcement learning (DRL) algorithms applied to the generation and control of the UAV autonomous trajectory during an olive-growing fly traps inspection task. The main objective of this proposal is to provide a reliable route for the UAV to reach the inspection points in the tree space to capture an image of the trap autonomously, avoiding possible obstacles present in the environment. The proposed framework was tested in a simulated environment using Gazebo and ROS. The results showed that the proposed solution accomplished the trial for environments up to 300 m3 and with 10 dynamic objects.The authors would like to thank the following Brazilian Agencies CEFET-RJ, CAPES, CNPq, and FAPERJ. The authors also want to thank the Research Centre in Digitalization and Intelligent Robotics (CeDRI), Instituto Politécnico de Bragança–IPB (UIDB/05757/2020 and UIDP/05757/2020), the Foundation for Science and Technology (FCT, Portugal) for financial support through national funds FCT/MCTES (PIDDAC) to CeDRI, and Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC) and IPB, Portugal. This work was carried out under the Project “OleaChain: Competências para a sustentabilidade e inovação da cadeia de valor do olival tradicional no Norte Interior de Portugal” (NORTE-06-3559-FSE-000188), an operation to hire highly qualified human resources, funded by NORTE 2020 through the European Social Fund (ESF).info:eu-repo/semantics/publishedVersio

    Optimisation-based verification process of obstacle avoidance systems for unmanned vehicles

    Get PDF
    This thesis deals with safety verification analysis of collision avoidance systems for unmanned vehicles. The safety of the vehicle is dependent on collision avoidance algorithms and associated control laws, and it must be proven that the collision avoidance algorithms and controllers are functioning correctly in all nominal conditions, various failure conditions and in the presence of possible variations in the vehicle and operational environment. The current widely used exhaustive search based approaches are not suitable for safety analysis of autonomous vehicles due to the large number of possible variations and the complexity of algorithms and the systems. To address this topic, a new optimisation-based verification method is developed to verify the safety of collision avoidance systems. The proposed verification method formulates the worst case analysis problem arising the verification of collision avoidance systems into an optimisation problem and employs optimisation algorithms to automatically search the worst cases. Minimum distance to the obstacle during the collision avoidance manoeuvre is defined as the objective function of the optimisation problem, and realistic simulation consisting of the detailed vehicle dynamics, the operational environment, the collision avoidance algorithm and low level control laws is embedded in the optimisation process. This enables the verification process to take into account the parameters variations in the vehicle, the change of the environment, the uncertainties in sensors, and in particular the mismatching between model used for developing the collision avoidance algorithms and the real vehicle. It is shown that the resultant simulation based optimisation problem is non-convex and there might be many local optima. To illustrate and investigate the proposed optimisation based verification process, the potential field method and decision making collision avoidance method are chosen as an obstacle avoidance candidate technique for verification study. Five benchmark case studies are investigated in this thesis: static obstacle avoidance system of a simple unicycle robot, moving obstacle avoidance system for a Pioneer 3DX robot, and a 6 Degrees of Freedom fixed wing Unmanned Aerial Vehicle with static and moving collision avoidance algorithms. It is proven that although a local optimisation method for nonlinear optimisation is quite efficient, it is not able to find the most dangerous situation. Results in this thesis show that, among all the global optimisation methods that have been investigated, the DIviding RECTangle method provides most promising performance for verification of collision avoidance functions in terms of guaranteed capability in searching worst scenarios

    Advancing Best Practices for Aversion Conditioning (Humane Hazing) to Mitigate Human–Coyote Conflicts in Urban Areas

    Get PDF
    Coyotes (Canis latrans) are now recognized as a permanent feature in urban environments across much of North America. Behavioral aversion conditioning, or humane hazing, is increasingly advocated as an effective and compassionate alternative to wildlife management strategies, such as trap and removal. Given a growing public interest in humane hazing, there is a need to synthesize the science regarding methods, outcomes, efficacy, and other relevant considerations to better manage human–coyote conflicts in urban areas. This paper was prepared as an outcome of a workshop held in July 2019 by Coyote Watch Canada (CWC) to synthesize the literature on aversion conditioning. The paper also includes the deployment experiences of members of the CWC Canid Response Team. Herein, we propose best practices to enhance the efficacy of aversion conditioning for the management of urban wildlife, particularly coyotes. We detail recommendations concerning: the importance of consistency, adaptability, humaneness, and clear goals; training and proactive implementation; and the need for a comprehensive wildlife coexistence program. We further detail additional considerations surrounding domestic dogs (C. lupus familiaris), public perceptions, and defining behavior and conflict. We hope this synthesis will assist wildlife managers and local governments in identifying and deploying nonlethal human–coyote conflict mitigation strategies that are effective, humane, and community supported

    How Bats Escape the Competitive Exclusion Principle—Seasonal Shift From Intraspecific to Interspecific Competition Drives Space Use in a Bat Ensemble

    Get PDF
    Predators that depend on patchily distributed prey face the problem of finding food patches where they can successfully compete for prey. While the competitive exclusion principle suggests that species can only coexist if their ecological niches show considerable differences, newer theory proposes that local coexistence can be facilitated by so-called stabilizing and equalizing mechanisms. A prerequisite to identify such mechanisms is the understanding of the strength and the nature of competition (i.e., interference or exploitation). We studied the interaction between two open-space foraging bats by testing if common noctule bats Nyctalus noctula shift their space use in response to simulated aggregations of conspecifics or heterospecific Pipistrellus nathusii. When confronted with playbacks of heterospecifics, N. noctula increased their activity in early summer, but decreased activity in late summer. This pattern was accompanied by a decrease in the proportion of large insects in late summer, suggesting a more intense competition for food in late compared to early summer. When confronted with playbacks of conspecifics, N. noctula did not change their activity, irrespective of season. Our results indicate that in early summer, intraspecific competition is more severe than interspecific competition for insectivorous bats. Likely, conspecifics engage in interference competition for flight space, and may suffer from reduced prey detectability as echolocation calls of conspecifics interfere with each other. During insect rich times, interspecific competition on the other hand may be mediated by fine scale vertical partitioning and the use non-interfering echolocation frequencies. In contrast, when food is scarce in late summer, bats may engage in exploitation competition. Our data suggests that N. noctula avoid aggregations of more agile bats like P. nathusii, probably due to impeded hunting success. Yet, as fast and efficient fliers, N. noctula may be able to escape this disadvantage by exploiting more distant foraging patches

    A robot model of the basal ganglia: Behavior and intrinsic processing

    Get PDF
    The existence of multiple parallel loops connecting sensorimotor systems to the basal ganglia has given rise to proposals that these nuclei serve as a selection mechanism resolving competitions between the alternative actions available in a given context. A strong test of this hypothesis is to require a computational model of the basal ganglia to generate integrated selection sequences in an autonomous agent, we therefore describe a robot architecture into which such a model is embedded, and require it to control action selection in a robotic task inspired by animal observations. Our results demonstrate effective action selection by the embedded model under a wide range of sensory and motivational conditions. When confronted with multiple, high salience alternatives, the robot also exhibits forms of behavioral disintegration that show similarities to animal behavior in conflict situations. The model is shown to cast light on recent neurobiological findings concerning behavioral switching and sequencing

    Improved Annealing-Genetic Algorithm for Test Case Prioritization

    Get PDF
    Regression testing, which can improve the quality of software systems, is a useful but time consuming method. Many techniques have been introduced to reduce the time cost of regression testing. Among these techniques, test case prioritization is an effective technique which can reduce the time cost by processing relatively more important test cases at an earlier stage. Previous works have demonstrated that some greedy algorithms are effective for regression test case prioritization. Those algorithms, however, have lower stability and scalability. For this reason, this paper proposes a new regression test case prioritization approach based on the improved Annealing-Genetic algorithm which incorporates Simulated Annealing algorithm and Genetic algorithm to explore a bigger potential solution space for the global optimum. Three Java programs and five C programs were employed to evaluate the performance of the new approach with five former approaches such as Greedy, Additional Greedy, GA, etc. The experimental results showed that the proposed approach has relatively better performance as well as higher stability and scalability than those former approaches
    • …
    corecore